U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fourth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; June/July - 2015 Electrical Machines - II

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Assume suitable missing data if any.

UNIT - I

	UNIT - I					
1. a.	With a neat diagram, Classify different types of DC Generator.	5				
b.	b. Describe different methods to improve commutation in DC Generator.					
c.	A short shunt compound DC generator delivers 100 A to a load at 250 V. The generator has					
	shunt field, series field and armature resistance of 130 Ω , 0.1 Ω and 0.1 Ω respectively.	7				
	Calculate the voltage generated in armature winding. Assume 1V drop per brush.					
2 a.	From the fundamental, derive the expressions for Torque developed by the DC motors.	6				
b.	Draw and explain characteristics of a DC series motor.	8				
c.	A 4 pole, 250 V, wave-connected shunt motor gives 10 kW when running at 1000 rpm and					
	drawing armature and field current of 60 A and 1 A respectively. It has 560 conductors. Its					
	armature resistance is $0.2~\Omega$. Assuming drop of 1V per brush, determine; (i) Total torque	6				
	(ii) useful Torque (iii) useful flux per pole (iv) rotational losses (v) Efficiency					
	UNIT – II					
3 a.	Explain how efficiency of a series motor can be computed by conducting field test.	7				
b.	Describe Hopkinson's test on two similar DC shunt machines to find the efficiency.	8				
c.	Summarize the advantages and disadvantages of Swinburne's test.	5				
4. a.	Summarize the advantages and disadvantages of retardation test.	5				
b.	The Hopkinson's test on two shunt machine gave following results for full load:					
	Line Voltage 250 V; Line current excluding field current 50 A; Motor Armature current, 380 A;	10				
	field current, 5 A and 4.2 A. Calculate the efficiency of each machine. Armature resistance of	10				
	each machine is 0.02Ω .					
c.	List the merits and demerits of Hopkinson's Test.	5				
	UNIT - III					
5. a.	With neat sketches, explain the constructional features of smooth cylindrical rotor and salient	8				
	pole alternators.					
b.	Derive the expression for emf equation of an alternator.	6				

c. A 3-phase, 16 pole synchronous generator has a resultant air-gap flux of 0.06 wb per pole. The flux is distributed sinusoidally over the pole. The stator has 2 slots per pole per phase and 4 conductors per slot are accommodated in two layers. The coil span is 150° electrical. Calculate the phase and line induced voltages when the machine runs at 375 rpm.

6

6. a. Summarize the advantages of connecting alternators in parallel.

4

b. A 6600 V, 1200 kVA, 3-phase alternator is delivering full-load at 0.8 power factor lagging. Its reactance is 25% and resistance negligible. By changing the excitation, the emf is increased by 30% at this load. Calculate the new values of current and power factor. The machine is connected to infinite busbars.

10

c. Define; (i) pitch factor and (ii) Distribution factor. Derive an expression for distribution factor.

6

UNIT - IV

7. a. Explain Blondel's two reaction theory of a salient pole alternator with necessary phasor diagram to find the voltage regulation.

10

b. A 3-phase star connected 1000 kVA, 2000 V, 50 Hz alternator gave the following open-circuit and short circuit test readings.

Field current	10	20	25	30	40	50
O.C. Voltage	800	1500	1760	2000	2350	2600
S.C. Current	-	200	250	300	-	-

10

The armature effective resistance per phase is 0.2Ω . Determine the full load percentage regulation at 0.8 pf lagging.

8. a. Explain the slip test on salient pole synchronous machines with a neat circuit diagram and indicate how X_d and X_q can be determined from the test.

10

b. Derive an expression for active power and reactive power developed in synchronous generator as a function of rotor angle ' δ '.

10

UNIT - V

9. a. Explain the principle of operation of synchronous motor.

6

 $b. \ \ Describe\ V\ and\ inverted\ V\ curves\ for\ different\ loading\ condition\ of\ synchronous\ motor.$

8

6

c. A 3000 V, 3-phase synchronous motor running at 1500 rpm, has its excitation kept constant corresponding to no-load terminal voltage of 3000 V. Determine the power input, power factor and torque developed for an armature current of 250 A if the synchronous reactance is 5 Ω per phase and armature resistance is neglected.

10 a. Describe the constructional features and principle operation of hysteresis Motors.

10

(i) Reluctance Motor (ii) Servomotor.

b. Write short notes on:

10