P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Fourth Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; June/July - 2015
Network Analysis - II
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each Unit.
UNIT - I

1. a What are initial and final conditions in networks? Why is it necessary to study these conditions in networks? Explain with a practical example.
b. In the circuit shown in Fig. $1 b$ switch K is closed at $t=0$. Find the expressions for
$i, \frac{d i}{d t}$ and $\frac{d^{2} i}{d t^{2}}$ all at $\mathrm{t}=0+$

Fig 16
c. In the circuit shown in Fig. 1c, capacitor C is charged to 100 V in the polarity shown. Switch K is closed at $\mathrm{t}=0$. Find the values of $\mathrm{i}_{1}, \mathrm{i}_{2}, d i_{1} / d t, d i_{2} / d t, \frac{d^{2} i_{1}}{d t^{2}}, d^{2} i_{2} / d t^{2}$ all at $\mathrm{t}=0+$.
Given; $\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F} . \mathrm{R}_{1}=\mathrm{R}_{2}=10 \mathrm{k} \Omega$.

2 a. Find $i_{L}(0+) ; v_{c}(0+) ; \frac{d v_{c}(0+)}{d t} \& \frac{d i_{L}(0+)}{d t}$ for the circuit shown in Fig. 2a.

b. In the given ckt shown in Fig. 2b steady state is reached with switch K open. Switch K is closed at $t=0$. Find the voltage V_{c} across the capacitor and current i_{2} through inductor at $t=0-$. Also find the values of $i_{1}, i_{2}, \frac{d i_{1}}{d t}$ and $\frac{d i_{2}}{d t}$ at $t=0+$.

UNIT-II

3 a. Find the inverse Laplace transform of the following functions;
i) $F(s)=\frac{1}{s\left(s^{2}-\theta^{2}\right)}$
ii) $F(s)=\frac{250}{(s+2)\left(s^{2}+625\right)}$
b. Find the Laplace transform of the periodic waveform shown in Fig. 3b.

4 a . In a series RLC circuit the following equation for the current is obtained. Use Laplace transform to solve the equation and find an expression for current $i(\mathrm{t})$.

$$
\frac{d i(t)}{d t}+3 i(t)+2 \int_{0}^{t} i(t) d t+8 \delta(t)=2 e^{-3 t} \text { with } i(0-)=4 \text { and } 2 q(0-)=8
$$

b. Find the Laplace transform of the periodic waveform shown in Fig. 4b using waveform synthesis.

UNIT- III

5 a. For the circuit shown in Fig. 5a, switch K is closed at $\mathrm{t}=0$. Find $V_{\mathrm{o}}(\mathrm{t})$ using Laplace transform. Assume $V_{\mathrm{o}}(0-)=5$ volts.
 transform to find current $i(\mathrm{t})$ through the circuit at $\mathrm{t}=0+$.
b. For the circuit shown in Fig. 6b determine an expression for current $i(\mathrm{t})$ by Laplace transform considering initial conditions given, by writing equations in time domain.

c. If impulse response $h(t)=2 e^{-3 t} u(t)$ and input $x(t)=u(t)-\delta(t)$ determine output $\mathrm{r}(\mathrm{t})$ using convolution theorem and verify the same by finding inverse Laplace transform.

UNIT - IV
7 a. List the restrictions on locations of poles and zeros in driving point functions.
b. For the circuit shown in Fig. 7 b find $\mathrm{Z}_{\text {in }}$ and voltage ratio transfer function.

Fig 76

P13EE45

c. Obtain the z parameters for the π network shown in Fig. 7C.

8 a. Obtain the pole - zero diagram of the given function and obtain the time domain response.
$I(s)=\frac{2 s}{(s+1)\left(s^{2}+2 s+4\right)}$
b. Determine Y parameter and hence Z parameters of the circuit shown in Fig. 8b.

9 a. Explain the properties of Hurwitz polynomial.
b. Check whether the following functions are Hurwitz polynomial.
i) $F(s)=s^{7}+3 s^{5}+s^{3}+2 s$
ii) $F(s)=s^{4}+s^{3}+3 s^{2}+2 s+2$

10 a . The driving point impedance of a one port LC network is given by $Z(s)=\frac{\left(s^{2}+1\right)\left(s^{2}+3\right)}{s\left(s^{2}+2\right)\left(s^{2}+4\right)}$ obtain the first and second form of Foster network.
b. A driving point function is give by $F(s)=\frac{s^{2}+6 s+8}{s^{2}+4 s+3}$. Show that the function can be realized in both cauer RC and RL forms.

