1. a.

2 a.

3 a.

4 a.

	P13EE46 Page No 1
	P.E.S. College of Engineering, Mandya - 571 401
	(An Autonomous Institution affiliated to VTU, Belgaum) Fourth Semester, B.E Electrical and Electronics Engineering
	Semester End Examination; June/July - 2015
	Electromagnetic Theory
	Time: 3 hrsMax. Marks: 100Note: Answer FIVE full questions, selecting ONE full question from each Unit.
	UNIT - I
. a.	Define the following with basic expression and their unit:
	i) Electric field intensity ii) Absolute potential
	iii) Electric flux density iv) Capacitance.
b.	Derive an expression for electric field intensity due to infinite sheet charge using Coulomb's Law
	as basis.
c.	Two uniform charge distributions are as follows: A sheet of uniform charge density ρ_s
	= - 50 nC/m ² at y = 2 m and a uniform line of $\rho_l = 0.2 \ \mu$ C/m at Z = 2 m, y = -1 m. Find \overline{E} at P (0
	0, 0).
la.	State and explain Gauss's Law. Show that $Q = \int_{s} \overline{D} d\overline{s}$ for an arbitrary closed surface.
	Derive expression for electric field intensity everywhere due to uniform volume charge density
	using Gauss's law.
0	A subindrical value $0 \le z \le 4$ w $\varepsilon_0 \le z \le 2$ w analogo contain shares If $\overline{E} = \frac{Z\rho}{\varepsilon}$ V/w
C.	A cylindrical volume $0 \le z \le 4m \& 0 \le \rho \le 2m$, encloses certain charge. If $\overline{E} = \frac{Z\rho}{\epsilon_0} \hat{a}_z V/m$
	determine the total charge enclosed by the cylinder.
	UNIT - II
3 a.	Show that energy expended in moving a point charge in an uniform electric field is independent of
	path and thus, prove that electric field as a negative gradient of potential.
b.	Calculate the work done in moving a 2 C charge from A $(1, 0, 0)$ to B $(0, 2, 0)$ along the path $y =$
	$2 - 2x$; $z = 0$ in the field $\overline{E} = 5x\hat{a}_x + 5y\hat{a}_y V/m$.
C	Given the potential $V = \frac{10}{r^2} \sin \theta \cos \phi$. Find the electric flux density \overline{D} at $\left(2, \frac{\pi}{2}, 0\right)$
U.	$r^2 = r^2 r^2$
la.	Discuss the properties of conductor, when it is subjected to electric field.
b.	Define current density and obtain the expressions for convection and conduction current densities.
c.	In certain region $\overline{I} = 3r^2 \cos\theta \hat{a} - r^2 \sin \hat{a} A / m$ find the current crossing surface defined by

c. In certain region $\overline{J} = 3r^2 \cos\theta \hat{a}_r - r^2 \sin \hat{a}_{\theta} A / m$ find the current crossing surface defined by $\theta = 30^{\circ}, \ 0 < \phi < 2\pi, \ 0 < r < 2m$

6

Contd...2

UNIT-III

	P13EE46 Page No 2			
5 a.	Derive the boundary conditions between the two perfect dielectric media.	8		
b.	Derive the expression for the capacitance of coaxial cable with inner radius 'a' and outer radius 'b'.	6		
c.	A parallel plate capacitor has plate area 200 cm ² and plate separation 3 mm. The charge density is			
	1 μ C/m ² with air as dielectric. Find; i) Capacitance of the capacitor, ii) Voltage between the	6		
	plates, and iii) Force with which the plates attract each other.			
6 a.	Two extensive homogenous isotropic dielectrics meet on the $z = 0$. For $z \ge 0$, $\in_{r_1} = 5$ and $z \le 1$			
	0, $\in_{r_2} = 3$. An uniform electric field $\overline{E}_1 = 2\hat{a}_x + 2\hat{a}_y - 4\hat{a}_z$ kV/m exists for $z \ge 0$. Find;	8		
	i) \overline{E}_2 for $z \le 0$ ii) the angles of E_1 and E_2 make with interface.			
b.	The potential distribution in the free space $V = 4x^2 - Ay^2 + 8$ satisfies Laplace's equation. Find,	6		
	i) the value of A ii) for the value of A determined in part (i) above determine \overline{E} at P(1, 2, 0).	0		
c.	State and prove uniqueness theorem.	6		
UNIT - IV				
7 a.	State and explain Biot-Savart's Law.	6		
b.	Derive the expression for the magnetic field intensity \overline{H} at an height 'h' along z-axis due to a	8		
	circular loop of radius 'a' carrying current of I located in $z = 0$ plane.			
c.	Derive the expression for the magnetic field intensity \overline{H} everywhere due to solenoid of length L	6		
	using Ampere's circuit law.			
8 a.	A square conducting loop of side '2a' lies in the $z = 0$ plane and carries a current I in the counter	6		
	clockwise direction. Find \overline{H} at the centre of loop.			
b.	Given $\overline{H} = 10\rho^2 \hat{a}_{\phi}$ in free space. Find \overline{J} .	6		
c.	What is the importance of vector magnetic potential \overline{A} ? Show that vector magnetic potential	8		
	obeys Poisson's equation.	0		
UNIT - V				
9 a.	Obtain the expression for transformer emf and motional emf.	8		
b.	The magnetic circuit of uniform cross section of 10^{-3} m ² and radius of toroid 10 cm is energized			
	by a current $i_i(t) = 3Sin(100\pi t)$ A in the coil of N ₁ = 200, find the emf induced in the coil of	6		
	$N_2 = 100$. Assume the $\mu = 500\mu_0$.			
c.	Obtain the expression for force between differential current elements.	6		
10 a	Derive the expression for force between two straight current carrying parallel conductors.	6		
b.	A straight infinitely long conductor carries current of 10 A is located along x-axis. Find the vector			
	force on a current carrying segment 'ab' of length 50 cm located at (0, 2, 0) cm and carrying	8		
	current of 2 mA.	_		
с.	Obtain the expression for self inductance of a solenoid.	6		