
\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Fourth Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; June - 2016
Network Analysis - II
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1. a. The circuit shown in Fig-1 was in steady state with switch K closed for $\mathrm{t}<0$. At $\mathrm{t}=0, \mathrm{~K}$ is opened. Determine the voltage across the switch $v_{k}, d v_{k} / d t$ and $d^{2} v_{k} / d t^{2}$ at $\mathrm{t}=0+$.

FIG-I

FIG-2 is 0.025 s . Find;
(i) The value of R
(ii) The value of C
(iii) The equation for $\mathrm{i}(\mathrm{t})$.

2 a. In the circuit shown in Fig-3 switch K is closed at $\mathrm{t}=0$. At $\mathrm{t}=0$ - all capacitor voltages and inductor currents are zero. Three node-to-datum voltages are identified as v_{1}, v_{2} and v_{3}. Find;
(i) v_{1} and $d v_{1} / d t$ at $t=0+$,
(ii) v_{2} and $d_{2} v_{d t}$ at $\quad t=0+\quad$ and
(iii) v_{3} and $\frac{d v 3}{d t}$ at $t=0+$

b. (i) What is the meaning of initial conditions in electrical circuits? Why do we need to compute them?
(ii) Describe the behaviour of R, L and C at $\mathrm{t}=0+$ and as $\mathrm{t} \rightarrow \infty$ when the excitation is D.C.

UNIT - II

3 a. Show that $L\{f(t-a) u(t-a)\}=\epsilon^{-a s} F(s)$ where $F(s)=L\{f(t)\}$ and using this result obtain the Laplace transform of a periodic function.
b. For the waveform shown in Fig-4, which is made up straight line segments, obtain the Laplace transform.

4 a. Express the recurring waveform shown in Fig-5 as a linear combination of appropriate basic signals and then obtain its Laplace transform.

FIG- 5
b. State and Prove convolution theorem of Laplace transforms.

UNIT - III

5 a. Find $v_{L}(t)$ for $t \geq 0$ in the circuit shown in Fig-6 by drawing Laplace transformed network. Take: $i_{L}(0-)=0$.

b. Determine the impulse response of the circuit shown in Fig-7 which is initially relaxed. Take $v_{L}(t)$ as output solve by drawing transformed network.

6 a. Show that the response of an initially relaxed linear circuit can be determined in terms of the step response using Duhammel's Super position Integral.
b. It is given that $F(S)=\frac{a S^{2}+b S+c}{S^{3}+2 S^{3}+S+1}$ Find a, b and c such that $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=1$.

UNIT - IV

7 a. An inductor L is in series with a resistance R. This is in Parallel with a capacitor C. The driving point impedance of this circuit has a dual pole at $(-1.5 \pm j 5.268)$. If $Z(j 0)=1$ find the values of R, L and C .
b. A two-part network is characterized by the equations,

$$
\begin{align*}
& 12 v_{1}+3 i_{1}-6 i_{2}+4 v_{2}=0 \tag{10}\\
& 6 v_{1}-5 i_{1}-2 i_{2}+0.1 v_{2}=0
\end{align*}
$$

Find y-parameters of the network.
8 a. Determine the z-parameters of the two part network shown in Fig-8.

FIG- 8
b. Obtain the condition for reciprocity and symmetry of a two-port network in terms of its ABCD parameters.

UNIT - V

9 a. What are Hurwitz polynomials? Mention their properties? How are polynomials tested for Hurwitz property?
b. Check whether the following functions are PR or not by giving reasons:
i) $\frac{2 s^{3}+2 s^{2}+3 s+2}{s^{2}+1}$
ii) $\frac{(s+2)(s+4)}{(s+1)(s+5)}$

10 a. Realize the following RC driving point impedance function in first Foster form and first Cauer form:

$$
\begin{equation*}
Z(s)=\frac{(s+2)(s+5)}{(s+1)(s+3)} \tag{10}
\end{equation*}
$$

b. Realize the driving point impedance function given below in two Cauer forms:

$$
\begin{equation*}
Z(s)=\frac{\left(s^{2}+1\right)\left(s^{2}+9\right)}{s\left(s^{2}+4\right)} \tag{10}
\end{equation*}
$$

