
U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E Electrical and Electronics Engineering Semester End Examination, Dec 2014 Linear Control Systems <u>Time: 3 hrs</u> <u>Max. Marks: 10</u> Note: Answer any FIVE full questions selecting at least TWO full questions from each part. PART - A 1.a. Define the following terms: i) System ii) control system iii) Servomechanism. iv) Open-loop system v) Closed loop system.	
 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E Electrical and Electronics Engineering Semester End Examination, Dec 2014 Linear Control Systems Time: 3 hrs Max. Marks: 10 Note: Answer any FIVE full questions selecting at least TWO full questions from each part. PART - A 1.a. Define the following terms: i) System ii) control system iii) Servomechanism. iv) Open-loop system v) Closed loop system. 	
Note: Answer any FIVE full questions selecting at least TWO full questions from each part. PART - A 1.a. Define the following terms: i) System ii) control system iii) Servomechanism. iv) Open-loop system v) Closed loop system.	
 1.a. Define the following terms: i) System ii) control system iii) Servomechanism. iv) Open-loop system v) Closed loop system. 	
 i) System ii) control system iii) Servomechanism. iv) Open-loop system v) Closed loop system. 	
 ii) control system iii) Servomechanism. iv) Open-loop system v) Closed loop system. 	
iii) Servomechanism.iv) Open-loop systemv) Closed loop system.	
iv) Open-loop systemv) Closed loop system.	5
v) Closed loop system.	5
b. Find the transfer function of second order RLC system.	5
c. For the mechanical system shown in Fig. 1(b)	
i) Draw mechanical network	
ii) Write differential equations	
iii) Draw Force-voltage analogous electrical network.	
$ \begin{array}{c} $	10
2 a. Obtain the transfer function $\frac{\theta(S)}{E_a(S)}$ for the armature controlled DC motor and draw the	ie 12
block diagram.	
b. Obtain $\frac{C(S)}{R(S)}$ for the block diagram shown in the Fig. 2(b) using block diagram reduction technique.	n 8

Contd...2

6

6

6

3 a. Obtain the transfer function $\frac{C(S)}{R(S)}$ for the signal flow graph shown in Fig. 3(a)

- b. Define standard test signals those are used in time domain analysis and give their Laplace transforms.
- c. Obtain the expression for unit step response of a first order system with unity feedback. 4
- 4 a What is the significance of time domain specifications? Derive the expression for rise time and peak time in case of second order system.
 - b. Explain the effects of PI controller for 2^{nd} order system performance.
 - c. Determine the step, ramp and parabolic error coefficients for a unity feedback system whose open loop transfer function is $G(S) = \frac{K}{S(S+5)(S+2)}$ Find steady state error for 7 ramp input.

PART - B

- i) Absolute stability
 ii) Conditional stability
 iii) Marginal stability
 b. Discuss the special case of Routh thurwitz criterion when all the elements in any one row of the array are zero.
- c. The open loop transfer function of a unity feedback control system is given by

$$G(S) = \frac{K}{(S+2)(S+4)(S^2+6S+25)}$$
10

Determine the range of K using RH criterion for absolute stability. Also estimate the value

of K which will cause sustained oscillations and frequency of oscillations at this value of K.

- 6 a. Discuss the steps involved to plot Root locus from the open loop transfer function.
 - b. Sketch the root locus for the open loop transfer function $G(S)H(S) = \frac{K(S+2)}{(S^2+2S+2)}$ 10
- 7 a. Define gain margin and phase margin. Explain how to find the stability of the closed loop system from Bode plot using suitable illustration.
 - b. Sketch the Bode plot for the open loop transfer function

$$G(S)H(S) = \frac{10}{S(S+0.1S)(1+S)}$$
10

Also find GM and PM.

- 8 a. Explain the Nyquist Criterion for stability analysis of a closed loop system. 8
 - b. Sketch the Nyquist plot for the open loop transfer function $G(S)H(S) = \frac{10}{S^2(1+0.25S)}$ 12

Discuss the stability of the closed loop system using Nyquist plot.

* * * * *