<i>U.S.N</i>					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec. - 2014

Operational Amplifiers and Linear Integrated Circuits

Note: i) Answer any FIVE full questions, selecting at least TWO full questions from each part ii) Op-amp data sheet and resistor, capacitor standard value list are permitted.

Time: 3 hrs

		PART - A		
1.	a.	Sketch the circuit of a high Z_{in} capacitor-coupled voltage follower. Briefly explain the	8	
		design operation.	O	
	b.	A capacitor coupled non-inverting amplifier is to be designed to have $A_{\nu}=90$ and		
		$V_{\rm o}=3$ V. The load resistance is 10 $k\Omega$ and the lower cut off frequency is to be 70 Hz.	8	
		Design the circuit using a 741 Op-amp. Assume; $R_2 = 56 \text{ k}\Omega$		
	c.	Sketch the circuits for:		
		i) Capacitor coupled voltage follower using a single polarity supply.	4	
		ii) Capacitor coupled non inverting amplifier using a single polarity supply.		
2	a.	What is Barkhausen Criteria? Explain phase margin and also sketch typical gain/frequency response, and phase/frequency response graphs.	8	
	b.	With a neat circuit show that compensating for stray capacitance can be achieved by	_	
		making time constant $C_2R_2 = C_5R_1$	6	
	c.	List out any six precautions that should be met for OP-amp circuit stability.	6	
3	a.	With a neat circuit diagram, explain precision full-wave rectifier with a combination of	8	
	1.	Half wave rectifier and summing circuit.	10	
		With a neat circuit explain symmetrical precision clipper with the necessary waveforms.	10	
	c.	List the advantages of precision rectifier over an ordinary diode circuit.	2	
4	a	Discuss the circuit operation of an inverting op-amp Schmitt trigger circuit with relevant	6	
		Diagrams.		
b.	b.	Draw the circuit of an op-amp Monostable multi vibrator. Show the relevant voltage		
		waveforms and explain its operation.	8	
	c.	A capacitor coupled zero-crossing detector is to handle a 1khz square wave input with a		
		peak-to-peak amplitude of 6 V. Design a suitable circuit using a 741 op-amp with a	6	
		\pm 12 V supply. Assume $V_{BE} = 0.1V$ and $\Delta V = 1V$.		

P08EE56 Page No... 2

PART - B

5	a.	Draw the circuit of a RC phase shift oscillator with amplitude stabilization. Discuss the			
		role of adjustable resistor included in such a circuit and explain the design issues	10		
		concerned.			
	b.	Sketch a Wein Bridge Oscillator and explain circuit operation. Also design Wein Bridge			
		Oscillator using a BIFET op-amp with a supply a \pm 12 V, to have an output frequency of	10		
		15 kHz.			
6 a	a.	Show how a band stop filter can be constructed using a low pass filter and a high -pass	10		
		filter. Draw the expected frequency response and explain the band-stop filter operation.	10		
	b.	Design:			
		i) First-order active low-pass filter circuit with a cut-off frequency of 1 kHz	10		
		ii) Second order active low-pass filter circuit with a cut off frequency of 1 kHz. Both			
		using 741 Op-amp.			
7 a	a.	. What is PLL? Mention its application and explain its principle of operation using relevant			
		diagrams.	6		
	b.	Draw the circuit of a universal active filter and explain its operations.	6		
	c.	Explain integrated circuit-voltage regulator with relevant circuit diagram.	8		
8.		Write explanatory notes on the following with relevant diagram and waveforms:	6		
		i) Small signal and power amplifiers.	8		
		ii) Triangular/Rectangular wave generator	6		
		iii) Adjustable output regulator.	U		

* * * * *