P08EE56 Page No... 1

ROJESE	oth par
. 8	
7.	1010101 2
P(A	
3	OF ENGINEERS OF THE PARTY OF TH

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec. - 2015

Tir	Operational Amplifier and Linear Linear Integrated Circuits me: 3 hrs Max. Marks: 100	
Note	e: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Assume missing data suitably if any. iii) Use of resistor and capacitor standard values list and op-amp data sheets are permitted. UNIT - I	
1 a.	Sketch and design a capacitor coupled voltage follower and briefly explain the operation of	6
	the name.	Ü
b.	Design a high input impedance capacitor coupled voltage follower with a cut off frequency of	
	50 Hz and load resistance of 3.9 k Ω . Also determine the minimum theoretical input impedance of the circuit.	8
c.	Sketch the circuit of an inverting amplifier and show how the upper cut off frequency can be set for the same.	6
2 a.	Sketch and design a high Z_{in} capacitor coupled non investing amplifier and briefly explain the operation of the same.	6
b.	Using a 741 op-amp, design a capacitor coupled non investing amplifier to have a voltage gain of 66 with load resistor of 2.2 k Ω and LCF of 120 Hz. Assume V_i = 15 mV.	8
c.	Sketch and design a capacitor coupled inverting amplifier using single polarity supply.	6
	UNIT - II	
3 a.	Sketch typical gain / frequency and phase / frequency response, and discuss the stability of high gain and low gain amplifiers.	8
b.	Sketch the circuit for phase lag and phase lead compensation and briefly explain the circuit operation.	6
c.	Using a 709 op-amp, design an inverting amplifier to have $A_u = 100$ and $V_s = 50$ mV. Select suitable compensating components.	6
4 a.	Discuss the effect of stray capacitance on op-amp circuit stability. Write the equations to determine the value of input stray capacitance that might produce instability.	8
b.	Explain miller effect. Derive an equation relating the input capacitance of an inverting	

amplifier to the capacitance connected between input and output terminals.

3. Select suitable frequency compensation.

c. Using LM 108 op-amp, design an inverting amplifier to amplify a 100 mV signal by a factor

6

6

P08EE56 Page No... 2

UNIT - III

5 a.	With neat circuit diagram and relevant waveforms, explain precision full wave rectifier.	8
b.	Design an adjustable peak clipping circuit to clip at approximately \pm (3 V to 5 V). The circuit	
	is to have unity voltage gain before clipping.	6
c.	With neat circuit diagram and relevant waveforms explain plan shift oscillator.	6
6 a.	a. Draw the circuit of a triangular / rectangular waveform generator which has frequency and duty cycle controls. Show all waveforms and explain the circuit operation.	
b.	b. Using a BIFET op-amp with a supply of \pm 12 V, design a Wein bridge oscillator to have an output frequency of 15 kHz.	
c.	With a neat circuit diagram and relevant waveforms, explain sample - and - hold circuit.	6
	UNIT - IV	
7 a.	Draw an op-amp Non – Inverting Schmitt trigger circuit and explain its operation.	6
b.	b. Using 741 op-amp with a supply of \pm 12 V, design an Inverting Schmitt trigger circuit to have	
	trigger points of ± 2 V.	8
c.	Sketch the circuit of second order active high pass filter. Briefly explain its operation.	6
8 a.	Draw an Astable multivibrator. Explain the circuit operation with relevant waveforms.	8
b.	b. Discuss the differences between wide band and narrow band pass filters. Sketch typical	
	frequency responses and write the related equation.	6
c.	c. Using 741 op-amp, design a first order active low pass filter to have cut off frequency of	
	1 kHz.	6
	UNIT - V	
9 a.	Briefly explain the action of a dc voltage regulator. Write the equations for line regulation,	8
	load regulation and ripple rejection.	
b.	Briefly explain the circuit operation of adjustable output regulator.	6
c.	Draw the relevant sketch and explain the operation of a universal Active filter.	6
10 a.	What is PLL? Mention its application and explain its principle of operation using relevant	8
	diagrams.	0
b.	Explain the basic circuits 723 Integrated circuit voltage regulation.	6
c.	What is a power booster? With example explain the need of it.	6