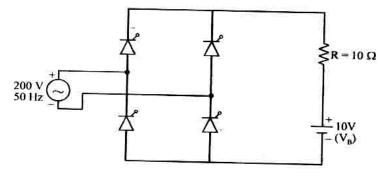

P13EE51 Page No 1			
5			
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E Electrical and Electronics Engineering Semester End Examination; Dec 2015 Power Electronics			
Time: 3 hrs Max. Marks: 100			
Note	e: Answer FIVE full questions, selecting ONE full question from each unit .		
	UNIT - I		
1 a.	Explain briefly the different types of thyrister power converter and mention two applications.	10	
b.	With a neat circuit and waveforms of control signal and output voltage, explain the control characteristic of IGBT and SCR.	6	
c.	Make the comparisons between BJT and MOSFET.	4	
2 a.	Sketch the structure of n-channel enhancement type MOSFET and explain its working principle. Also draw its transfer characteristics.	8	
b.	Sketch and explain the switching characteristics of power BJT. The sketch should have the waveform;	6	
	i) VBE ii) IB iii) IC.		
c.	Draw and explain the switching characteristics of IGBT.	6	
	UNIT - II		
3 a.	With a neat circuit, explain turn on and turn off base drive control for transistor.	6	
b.	With neat circuit explain the necessary of isolation. Explain the two isolation schemes for power electronics devices.	6	
c.	Explain the significance of over current and over voltage and their protection for BJT's.	8	
4 a.	Using two transistor analogy, derive an expression for anode current of SCR and also explain the V-I characteristics of SCR.	10	
b.	What is the need of series and parallel operation of a thyristor and explain them with relevant diagram.	8	
c.	State the conditions to be satisfied for proper turn-off of SCR.	2	
	UNIT - III		
5 a.	With the help of circuit diagram and waveforms explain the operation of self commutation.	8	
b.	In the Fig. Q5 (b) the source voltage $V = 100V$ and current through R_1 and R_2 is 25 A. The		
	turn-off time of both the SCRS is 40 seconds. Find the value of capacitor for successful	4	


commutation and hence show that circuit turn off time is 0.693 RC.

	115. ()			
c.	Distinguish between line commutation and forced commutation.	8		
6 a.	Distinguish between on-off control and phase control of AC voltage controller.	4		
b.	Explain the operation of single phase bid bidirectional AC voltage controller for resistive load.	8		
c.	An AC voltage controller has a resistive load of $R = 10$ and rms input voltage is			
	Vs =120 V, 60 Hz. The thyristors switch is ON for $n = 25$ cycles and OFF for $m = 75$	8		
	cycles. Determine;	0		
	i) The RMS output voltage ii) Input power factor.			
UNIT - IV				
7 a.	What is a chopper? How are choppers classified? Explain the operation of class C chopper.	8		
b.	With the help of a circuit schematic describe principle of step-up chopper. Obtain the	8		
	expression for average output voltage in terms of duty ratio.	0		
c.	Input to the step up chopper is 200 V. The output required is 600 V. If the conducting time			
	of thyristor is 200 µs Compute;			
	i) Chopping frequency	4		
	ii) If the pulse width is halved for constant frequency of operation, and the new output			
	voltage.			
8 a.	Explain the principle of operation of a single phase full bridge inverter with suitable circuit	10		
	diagram and waveform.	10		
b.	With the help of neat diagram and waveform and explain the operation of 180 mode of 3ϕ	10		
	inverter with star connected R - load.	10		
UNIT - V				
9 a.	With neat circuit and waveform derive an expression for the RMS value of output voltage	8		
	of phase semi converter with R.L. load. (Assume discontinuous load current).	0		
b.	A single neat half wave controlled rectifier is used to supply power to 10 load from 230 V,			
	50 Hz supply at a firing angle of 30°. Calculate;	6		
	i) Average output voltage ii) Effective output voltage iii) Average load current.			
c.	With relevant circuit and waveform explain the operation of a dual converter.	6		

10 a. With neat circuit and waveforms explain the working principle of 3-half wave controlled rectifier with R load.

b. In the circuit down shown find the charging current if the trigger angle $\alpha = 90^{\circ}$

c. A single phase full wave controlled rectifier is used to supply a resistive load of 10 Ω from a 230 V, 50 Hz, supply and firing angle of 90°. What is its mean load voltage? If a large inductance is added in series with the load resistance, what will be the new output load voltage?

6

* * * *

P13EE51

6

8