Page No... 1 P13EE56

Pay	part send age	3
. 3	X E	Ĭ,
S T	Inicial I	6
30 7	22.000	1
Jen	3	1
1	LA DIS DISCONALIZZAZIO	and a

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Electrical and Electronics Engineering **Semester End Examination; Dec. - 2015**

Operational Amplifiers and Linear Integrated Circuits

 Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Missing data may suitably assume. iii) Use of resistor and capacitor standard values list and op-amp data sheets are permitted. UNIT - I a. Explain the working of a high input Impedance capacitor coupled voltage follower circuit, with a neat circuit diagram. b. Design a High Z_{in} capacitor – coupled non inverting amplifier to have a low cut off frequency of 200 Hz. The input and output voltages are to be 15 mV and 3 V respectively and the minimum load resistance is 12 kΩ. Design using a BIFET Op-amp. c. A capacitor coupled voltage follower is to be designed to have a lower cut-off frequency of 120 Hz. The load resistance is 8.2 kΩ and the op-amp used has a maximum input bias current of 600 nA. Design suitable circuit. 2 a. Sketch the circuit of a capacitor coupled inverting amplifier using a single polarity power supply. Briefly explain its operation. b. Design capacitor coupled inverting amplifier using op-amp 741, to have voltage gain of 100. Assume signal voltage of 10 mV and load of 4.7 kΩ and f_L = 120 Hz. c. Explain the upper cut off frequency of an op- amp circuit and derive the condition to set upper cut-off frequency for an Inverting amplifier. UNIT - II 3 a. Define slew rate and derive an expression for maximum peal value of a sine wave O/P voltage. b. Discuss operational amplifier circuit stability and show how feedback in inverting amplifier can produce instability.
 with a neat circuit diagram. b. Design a High Z_{in} capacitor – coupled non inverting amplifier to have a low cut off frequency of 200 Hz. The input and output voltages are to be 15 mV and 3 V respectively and the minimum load resistance is 12 kΩ. Design using a BIFET Op-amp. c. A capacitor coupled voltage follower is to be designed to have a lower cut-off frequency of 120 Hz. The load resistance is 8.2 kΩ and the op-amp used has a maximum input bias current of 600 nA. Design suitable circuit. 2 a. Sketch the circuit of a capacitor coupled inverting amplifier using a single polarity power supply. Briefly explain its operation. b. Design capacitor coupled inverting amplifier using op-amp 741, to have voltage gain of 100. Assume signal voltage of 10 mV and load of 4.7 kΩ and f_L = 120 Hz. c. Explain the upper cut off frequency of an op- amp circuit and derive the condition to set upper cut-off frequency for an Inverting amplifier. UNIT - II 3 a. Define slew rate and derive an expression for maximum peal value of a sine wave O/P voltage. b. Discuss operational amplifier circuit stability and show how feedback in inverting amplifier can produce instability.
 of 200 Hz. The input and output voltages are to be 15 mV and 3 V respectively and the minimum load resistance is 12 kΩ. Design using a BIFET Op-amp. c. A capacitor coupled voltage follower is to be designed to have a lower cut-off frequency of 120 Hz. The load resistance is 8.2 kΩ and the op-amp used has a maximum input bias current of 600 nA. Design suitable circuit. 2 a. Sketch the circuit of a capacitor coupled inverting amplifier using a single polarity power supply. Briefly explain its operation. b. Design capacitor coupled inverting amplifier using op-amp 741, to have voltage gain of 100. Assume signal voltage of 10 mV and load of 4.7 kΩ and f_L = 120 Hz. c. Explain the upper cut off frequency of an op- amp circuit and derive the condition to set upper cut-off frequency for an Inverting amplifier. UNIT - II 3 a. Define slew rate and derive an expression for maximum peal value of a sine wave O/P voltage. b. Discuss operational amplifier circuit stability and show how feedback in inverting amplifier can produce instability.
 120 Hz. The load resistance is 8.2 kΩ and the op-amp used has a maximum input bias current of 600 nA. Design suitable circuit. 2 a. Sketch the circuit of a capacitor coupled inverting amplifier using a single polarity power supply. Briefly explain its operation. b. Design capacitor coupled inverting amplifier using op-amp 741, to have voltage gain of 100. Assume signal voltage of 10 mV and load of 4.7 kΩ and f_L = 120 Hz. c. Explain the upper cut off frequency of an op- amp circuit and derive the condition to set upper cut-off frequency for an Inverting amplifier. UNIT - II 3 a. Define slew rate and derive an expression for maximum peal value of a sine wave O/P voltage. b. Discuss operational amplifier circuit stability and show how feedback in inverting amplifier can produce instability.
 2 a. Sketch the circuit of a capacitor coupled inverting amplifier using a single polarity power supply. Briefly explain its operation. b. Design capacitor coupled inverting amplifier using op-amp 741, to have voltage gain of 100. Assume signal voltage of 10 mV and load of 4.7 kΩ and f_L = 120 Hz. c. Explain the upper cut off frequency of an op- amp circuit and derive the condition to set upper cut-off frequency for an Inverting amplifier. UNIT - II 3 a. Define slew rate and derive an expression for maximum peal value of a sine wave O/P voltage. b. Discuss operational amplifier circuit stability and show how feedback in inverting amplifier can produce instability.
Assume signal voltage of 10 mV and load of 4.7 kΩ and f _L = 120 Hz. c. Explain the upper cut off frequency of an op- amp circuit and derive the condition to set upper cut-off frequency for an Inverting amplifier. UNIT - II 3 a. Define slew rate and derive an expression for maximum peal value of a sine wave O/P voltage. b. Discuss operational amplifier circuit stability and show how feedback in inverting amplifier can produce instability.
cut-off frequency for an Inverting amplifier. UNIT - II 3 a. Define slew rate and derive an expression for maximum peal value of a sine wave O/P voltage. b. Discuss operational amplifier circuit stability and show how feedback in inverting amplifier can produce instability.
B a. Define slew rate and derive an expression for maximum peal value of a sine wave O/P voltage.b. Discuss operational amplifier circuit stability and show how feedback in inverting amplifier can produce instability.
voltage. b. Discuss operational amplifier circuit stability and show how feedback in inverting amplifier can produce instability.
b. Discuss operational amplifier circuit stability and show how feedback in inverting amplifier can produce instability.
c. Calculate the minimum rise time and maximum undistorted output pulse amplitude at that rise time for an amplifier with closed loop Gain 50, using a 741 op-amp.
a. Sketch the circuit of lag compensating network. Explain its operation. Show how it affects the frequency response of op-amp.
b. List the precautions that should be observed for operational amplifier circuit stability.

P13	EE56 Page No 2	
c.	Explain the effects of:	8
	i) Stray capacitance ii) Load capacitance on circuit stability.	8
	UNIT - III	
5 a.	Draw an op-amp sample and hold circuit sketch the signal, control and output voltage waveforms and explain the circuit operation.	12
b.	Using a BIFET op-amp, design a dead zone circuit to pass only the upper IV portion of the positive half cycle of a sine wave input with a 3 V peak value. Supply voltage is if \pm 15 V.	8
6 a.	Draw the circuit of a Triangular / Rectangular waveform generator which has frequency and duty cycle controls. Show all waveforms and explain the circuit operation.	10
b.	With a neat circuit diagram, explain the operation of precision pulse/minus clipping circuit using two dead zone circuits and show the wave forms at different points.	10
	UNIT - IV	
7 a.	Draw the circuit of second order low and high pass filters and explain the circuit operation.	6
b.	Sketch the circuit of Monostable multivibrator. Draw the input and output waveforms and explain the circuit operation.	8
c.	Design a single stage band pass filter, to have unity voltage gain and a pass band from 300 Hz to 30 kHz. [Assume $C_2 = 1000 \text{ pF}$].	6
8 a.	What is a Band pass filter? Sketch the circuit of a single stage band pass filter, explain the low pass and high pass operation of circuit. Discuss the design.	8
b.	Using a 741 op-amp, design the first order active low-pass filter to have a 1.2 kHz cut-off frequency. [$V_i = 70 \text{ mV}$], given.	6
c.	Design an Inverting Schmitt trigger circuit to give triggering points of \pm 2 V. Using a 741 opamp with $V_{cc} = \pm$ 12 V.	6
	UNIT - V	
9 a.	Write a short notes on:	
	i) Universal achieve filter.	12
	ii) Switched capacitor filter.	
b.	With a net circuit diagram, explain the operation of a precision voltage regulator.	8
10 a.	What is phase - locked - loop? Explain it with a block diagram.	8
b.	Sketch the circuit of a voltage follower regulator and explain its operation.	6
c.	Explain the terms:	
		6

Line Regulation, Load Regulation and Ripple Rejection for a d.c. Voltage Regulator.