P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E. - Electrical and Electronics Engineering
 Semester End Examination; Dec. - 2015
 Digital Signal Processing

Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting at least ONE full question from each unit.
ii) Assume suitably missing data if any.

UNIT - I

1 a. Explain the relation between DFT and Z - transform.
b. Find the 4 - point DFT of the sequence $x(n)=\cos \left[\frac{n \pi}{4}\right]$.
c. The first five points of the 8 - point DFT of a real valued sequence are $\{0.25,0.125-\mathrm{j} 0.3018$, $0,0.125-\mathrm{j} 0.0518,0\}$. Determine the remaining three points.
2a. If $y(n)=\frac{[x(n)+x(-n)]}{2}$ find $Y(k)$; if $x(k)=\{0.5,2+j, 3+j 2, j, 3,-j, 3-j 2,2-j\}$.
b. Explain what is meant by twiddle factors.
c. Let $X(k)$ denotes the $\mathrm{N}-$ point DFT of the $\mathrm{N}-$ point sequence $x(n)$,
i) Show that if $x(n)$ satisfies the relation $x(n)=-x(N-1-n)$ then $X(0)=0$.
ii) Show that with N even and if $x(n)=x(N-1-n)$ then $x\left(\frac{N}{2}\right)=0$.

UNIT - II

3 a. A four point sequence $x(n)=\{1,2,3,4\}$ has $\operatorname{DFT} X(k), 0 \leq \mathrm{k} \leq 3$ without performing DFT or IDFT, determine the signal values which has DFT $X(k-1)$.
b. Given a real finite length sequence $x(n)=\{4,3,2,1,0,0,1,1\}$,
i) $y(n)$ is a sequence relates to $x(n)$ such that $Y(k)=W_{8}^{+n k} X(k)$ where $X(k)$ is 8 point DFT of $x(n)$, obtain $y(n)$.
ii) Also obtain finite length sequence $q(n)$ related to $x(n)$ such that its 8 point DFT is $Q(k)=\operatorname{Re}\{X(k)\}$.
4 a . State and prove the:
i) Circular time shift of a sequence
ii) Circular frequency shift of a sequence.
b. Given the sequence $x_{1}(n)$ and $x_{2}(n)$ compute;
(i) The Circular convolution of $x_{1}(n)(\mathrm{N}) x_{2}(n)$ for $\mathrm{N}=6$
(ii) The linear convolution $x_{1}(n) * x_{2}(n)$
(iii) What value of N is necessary so that linear and circular convolution are the same on the N -point interval.
(iv) Determine the non zero lengths of $x_{1}(n)$ and $x_{2}(n)$ and how the results in part (iii) could be obtained without performing calculations. Given:
$x_{1}(n)=\{2,1,1,2\}$ and $x_{2}(n)=\{1,-1,-1,1\}$.

UNIT - III

5 a . Use the 8 -point radix-2 input bit reserved, DIT-FFT algorithm to find the DFT of the sequence, $x(n)=\{0.707,1,0.707,0,-0.707,-1,-0.707,0\}$.
b. What is FFT? Develop an 8-point DIF-FFT. Determine DFT of the following 8-point sequence, $x(n)=\left(\frac{1}{4}\right)^{n}, 0 \leq n \leq 7$ Using FFT flow graph, Show all the intermediate results.

6 a . The DFT, $X(k)$ of sequence is given as,

$$
\begin{equation*}
X(k)=\{0,2 \sqrt{2}(1-j), 0,0,0,0,0,2 \sqrt{2}(1+j 1)\} \tag{10}
\end{equation*}
$$

Determine the corresponding time sequence $x(n)$ and write its signal flow graph.
b. A complex sequence $z(n)$ with $D F T, Z(k)$ is formed as $z(n)=x(n)+j y(n)$ where $x(n)$ and $y(n)$ are real valued sequence with corresponding DFT's $X(K)$ and $Y(k)$ respectively. Express $X(k)$ and $\mathrm{Y}(\mathrm{k})$ in terms of $Z(k)$. Given $\mathrm{Z}(k)=\{12+j 12,1.414+j 3.414,0,(-0.5858+j 1.414)$,
b. The Transfer function of a discrete casual system is given by $H(z)=\frac{1-z^{-1}}{1-0.2 z^{-1}-0.15 z^{-2}}$.

Draw cascade and parallel realization.

UNIT - V

9 a . Design a second order band pass digital butterworth filter with pass band of 200 Hz to 300 Hz and sampling frequency of 2000 Hz using bilinear transformations.
b. Design a second order high pass digital filter for following specifications. Ripple in the pass
band $=1 \mathrm{db}$, pass band edge frequency $=100 \mathrm{~Hz}$, Sampling frequency $=400 \mathrm{~Hz}$, Monotic response in the stop band. Use $S \rightarrow \frac{2}{j}\left[\frac{1-z^{-1}}{1+z^{-1}}\right]$ type of mapping.
10. Design the symmetric FIR low pass filter whose desired frequency response is given as $H_{d}(w)\left\{\begin{array}{cc}e^{-j w c} & \text { for }|w| \leq w_{c} \\ 0 & \text { otherwise }\end{array}\right.$.The length of the filter should be 7 and $\mathrm{w}_{\mathrm{c}}=1 \mathrm{rad} / \mathrm{sec}$.

Use (i) Rectangular window
(ii) Hanning window.

