| U.S.N |  |  |  |  |  |
|-------|--|--|--|--|--|



Explain circuit operations.

## P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec - 2016/Jan - 2017 Operational Amplifiers and Linear Integrated Circuits

Time: 3 hrs Max. Marks: 100

*Note*: i) Answer *FIVE* full questions, selecting *ONE* full question from each unit.

ii) Use of resistor and capacitor standard values list and Op-amp data sheets are permitted.

|      | tily obe of resistor and capacitor standard ratios his and op amp data sheets are permitted.                       |    |
|------|--------------------------------------------------------------------------------------------------------------------|----|
|      | UNIT - I                                                                                                           |    |
| l a. | With a neat circuit diagram, design a high $Z_{in}$ capacitor coupled voltage follower. Obtain the                 | 10 |
|      | expression for input impedance of the circuit.                                                                     |    |
| b.   | Design a capacitor coupled inverting amplifier to operate with a $\pm$ 20 V supply. The minimum                    |    |
|      | input signal level is 50 mV, the voltage gain is to be 68, the load resistance is 500 $\Omega$ , the lowest        | 8  |
|      | cutoff frequency is to be 200 kHz. Use 741 Op-Amp ( $I_{Bmax} = 5000 \text{ nA}$ ).                                |    |
| c.   | How do you set the upper cutoff frequency for an inverting amplifier?                                              | 2  |
| 2 a. | Explain the design of a capacitor coupled voltage follower and write the equations for finding circuit components. | 8  |
| b.   | A capacitor coupled non-inverting amplifier is to have an $A_v = 90$ and $V_0 = 3$ V. The load                     |    |
|      | resistance is 10 k $\Omega$ , and lower cutoff frequency is to be 70 Hz. Design a suitable circuit using           | 8  |
|      | 741 Op-Amp ( $I_{Bmax} = 500 \text{ nA}$ ).                                                                        |    |
| c.   | Draw the circuit for a difference amplifier and write the equations for $X_{C1}$ , $X_{C2}$ and $X_{C3}$ .         | 4  |
|      | UNIT - II                                                                                                          |    |
| 3 a. | What is frequency compensation? Mention the condition for system stability.                                        | 4  |
| b.   | Explain Miller effect compensation.                                                                                | 8  |
| c.   | Define slew rate and derive an expression for maximum/peak value of sine wave output voltage.                      | 8  |
| 4 a. | Discuss the method of compensating for stray capacitance with relevant circuit diagram and equations.              | 6  |
| b.   | Discuss Z <sub>in</sub> Mod compensation technique of frequency compensation with relevant circuit                 | 0  |
|      | diagram and equations.                                                                                             | 8  |
| c.   | List the precautions that should be observed for operational amplifier circuit stability.                          | 6  |
|      | UNIT - III                                                                                                         |    |
| 5 a. | Sketch an Op-Amp precision full wave rectifier circuit. Draw its input and output waveforms.                       | _  |
|      | Explain the circuit operations.                                                                                    | 6  |
| b.   | Draw an Op-amp based sample and hold circuit. Draw its input, control and output waveforms.                        | 8  |

**P13EE56** Page No... 2

| c.    | Design a non saturating precision half wave rectifier to produce a 2 V peak output from a sign   |    |
|-------|--------------------------------------------------------------------------------------------------|----|
|       | wave input with a peak value of 0.5 V and frequency of 1 MHz. Use a bipolar Op-Amp with a        | 6  |
|       | supply voltage of $\pm 15$ V.                                                                    |    |
| 6 a.  | State the Bark Hausen criteria and explain how it is fulfilled in the RC phase shift oscillator? | 8  |
| b.    | Draw the circuit of a Wein Bridge oscillator. Sketch the output and feedback voltage             |    |
|       | waveforms and explain the circuit operation.                                                     | 6  |
| c.    | Using a BIFET Op-amp with a supply of ±12 V, design a Wein Bridge oscillator to have an          | 6  |
|       | output frequency of 15 kHz.                                                                      | 6  |
|       | UNIT - IV                                                                                        |    |
| 7 a.  | Discuss the circuit operation and design of an Inverting Schmitt trigger circuit. Explain the    | 10 |
|       | means of adjusting the trigger points in such a circuit.                                         | 10 |
| b.    | Draw the circuit of an Op-Amp Mono-Stable Multi-Vibrator. Show the relevant voltage              | 10 |
|       | waveforms and explain its operation.                                                             | 10 |
| 8 a.  | Draw the circuit of:                                                                             |    |
|       | i) First order, Low pass and first order, High pass filters                                      | 12 |
|       | ii) Second order, Low pass and second order High pass filters.                                   |    |
| b.    | Discuss the single stage first order band pass filters with relevant circuit diagrams and        | 8  |
|       | equations.                                                                                       | Ü  |
|       | UNIT - V                                                                                         |    |
| 9 a.  | Explain precision voltage regulator working with a neat diagram.                                 | 8  |
| b.    | Draw the relevant sketch and explain the operation of a universal active filter.                 | 6  |
| c.    | Sketch the basic circuit of a 723 IC voltage regulator and explain.                              | 6  |
| 10 a. | Explain briefly the class A and class B power amplifier with neat circuit and wave forms.        | 10 |
| b.    | Briefly explain the operation of switched capacitor filter and mention the advantages of the     | 10 |

same.