U.S.N

10

10

10

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Sixth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; June/July - 2015 Modern Control Theory

Time: 3 hrs Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

- 1. a. Define: state, state variables, state space, and state model of a system. State and explain non uniqueness of state variables.
 - b. Obtain the state model of the system shown in Fig. 1(b).

- 2 a. Determine the state model of an armature controlled dc motor.
- b. Obtain the three canonical forms of state model for the system described by the transfer function.

$$\frac{Y(s)}{X(s)} = \frac{10s + 40}{s^3 + 4s^2 + 3s}$$

3 a. What are Eigen values and Eigen vectors? Use them to diagonalize the matrix

$$A = \begin{bmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{bmatrix}$$
 10

- b. Find the ZIR of the system X = AX if $A = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}$ and $X(0) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
- 4 a. Derive the TF from the state model. Find the TF if the state model is

$$\overset{\square}{X} = \begin{bmatrix} -2 & -3 \\ 4 & 2 \end{bmatrix} X + \begin{bmatrix} 3 \\ 5 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 \\ 1 \end{bmatrix} X$$

b. Define ZIR and ZSR. Derive equations for the total response in terms of ZIR and ZSR.

PART - B

5 a. Discuss the controllability and observability criteria and the duality property associated with them.

b. Ascertain the controllability and observability of the system described by the equations:

6 a. Design a state feedback controller so that the closed loop poles of the system.

$$\dot{X} = AX + Bu \text{ where } A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ are placed at } -2 \pm j3.464 \text{ and } -5$$
 10

using Ackermann formula.

- b. What is an observer system? Draw the block diagram of a feedback system employing the observer. Give the stepwise procedure to design an observer.
- 7 a. Define: Positive definiteness; Negative definiteness; and indefiniteness.
- b. Examine the stability of the system $\overset{\bullet}{X} = AX$ if $A\begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}$ using Liapunov method.
- 8 a. Explain: (i) Equilibrium state (ii) Asymptotic stability

 (iii) Asymptotic stability in the large (iv) Instability.
 - Examine the stability, by the Krasovaskii theorem, of the system described by

* * * * *