Time: 3 hrs

Note: Answer any FIVE full questions, selecting atleast TWO full questions from each part.

PART – A

1. a.	What are the different topologies of dc-dc converter systems? Draw the equivalent circuits in	6
	each case.	
b.	Explain the operation of a buck-boost converter with relevant equivalent circuits for the switch states and wave diagrams.	6
C	The inductance in a buck-boost converter operating at 20 kHz is 0.05 mH. The input voltage	
с.	is 15 V and the capacitor is sufficiently large. Calculate the duty ratio if the output voltage is	8
	to be regulated at 10 V when supplying a load of 10 W.	0
2		0
	Explain the operation of full bridge dc – dc converter with bipolar voltage switching.	8
b.	Explain the operation of Cuk converter.	6
c.	In a Cuk converter operating at 50 kHz, $L_1 = L_2 = 1$ mH and $C_1 = 5\mu$ F. The output capacitor	
	is sufficiently large to keep output voltage constant. The converter is fed at 10 V and the	
	output voltage is regulated to be constant at 5 V when supplying a load of 5 W. Assuming	6
	continuous current conduction mode, calculate the percentage errors in assuming constant	
	voltage across C_1 or in assuming constant inductor currents.	
3 a	What are voltage source inverters? Explain the basic concepts used in the three VSI	
5. u.	categories.	6
b.	Explain the operation of a single - phase full - bridge inverter with the help of necessary	~
	circuit diagram and waveforms.	6
c.	A single-phase full-bridge inverter operating at 400 Hz with an input dc voltage of 220 V	
	supplies an RLC load with R = 5 Ω , L = 10 mH, and C = 26 μ F. Determine the rms load	8
	current and the TDH of the load current considering only up to 5 th harmonic.	
1 0	Explain the operation square wave inverter.	6
		0
b.	Discuss the effect of blanking time on the output voltage of a single-phase full-bridge	6
	inverter.	
c.	Explain the operation of a full bridge inverter using PWM with unipolar voltage switching	8
	with relevant diagrams.	0

PART - B

5. a.	What are the limitations of switch-mode converters? How are these limitations minimized in	6
	resonant converters? Give the classification of resonant converters.	6
b.	Explain the operation of any one ZCS resonant-switch converter configurations with the	0
	necessary diagrams.	8
c.	A thyristor based resonant RLC inverter has $R = 1 \Omega$, $L = 0.1 \text{ mH}$, and $C = 10 \mu F$. Find the	
	maximum switching frequency for non-overlap operation if the turn-off time of the thyristor	6
	is 12 μs.	
6. a.	Explain the operation of a fly back converter with the help of circuit diagram and waveforms.	6
b.	Explain the operation of an actively clamped resonant inverter.	6
c.	Explain the basic operation of a resonant-dc-link inverter with zero-voltage switching.	8
7. a.	Explain the two basic configurations of an UPS system.	6
b.	Give the basic configurations of switched-mode dc power supplies.	6
c.	The dc output voltage of a dc push-pull converter is 24 V at a resistive load of 0.4 Ω . The on-	
	state voltages of transistor and diodes are 1.2 V and 0.7 V respectively. The primary to	8
	secondary turn's ratio of the transformer is 2. Determine the average input current, and the	0
	efficiency. Assume ideal transformer and neglect input and output ripple currents.	
8. a.	What are the problems of the transformer core? How can these be minimized?	4
b.	Explain the procedure the single-pass method of designing a transformer, with flow chart.	8
c.	Describe the algorithmic steps involved in the single-pass algorithm for the design of	8
	inductors.	0

* * * * *