Time: 3 hrs

Max. Marks: 100

6

8

6

6

8

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

UNIT - I

- 1 a. Define the following with examples :
 - i) Oriented Graph ii) Basic cutest iii) Basic loop.
- b. The basic incidence matrix is given below. Draw the oriented graph. Obtain loop incidence matrix.

	-1	0	0
	0	-1	0
4 _	0	0	-1
A =	1	-1	0
	0	0 -1 0 -1 1 0	-1
	1	0	-1_

c. The oriented connected graph is shown in Fig. Q1(c). Obtain basic cutest incidence B and basic loop incidence matrix C.

2 a. Define the following terms with example :

i) Tree and Co-Tree ii) Primitive network iii) Augmented cutest Incidence matrix.

- b. For the network shown in Fig. Q 2(b), consider elements (1, 2, 3) are tree branches and node-4 as reference. Obtain;
 - i) Bus incidence matrix ii) Branch path incidence matrix K and hence verify $A_b K^t = U$

Contd.....2

Page No... 2

c. Draw the oriented graph for the incidence matrix given in Table 2(c) below. Mark the relevant elements on the diagram. Also obtain \hat{A} .

Table 2(c)							
Bus\e	1	2	3	4	5	6	7
Р	1	0	0	-1	0	0	1
Q	-1	-1	-1	0	0	0	0
R	0	0	1	0	-1	1	0
S	0	0	0	0	0	-1	-1

UNIT	-	Π
------	---	---

- 3 a. Derive the expression for bus admittance matrix using singular transformation technique.
 - b. For the power system shown in Fig. Q 3(b), Obtain Y_{bus} by singular transformation and verify the result by inspection method.

- c. Obtain the equivalent circuit of the transformer with off-nominal turns ratio.
- 4 a. Derive an expression for diagonal element Z_{qq} of bus impedance matrix using building algorithm when branch is added to the partial network. 6
 - b. The series impedances of the lines are shown in Fig Q4(b). Taking the elements in the order develop Z_{bus} by building algorithm method.

8

6

c. For the network graph shown in Fig. 4(c) obtain Y_{bus} with node 1 as reference using singular transformation. Neglect mutual coupling self impedance of elements are marked on the diagram.

Contd.....3

6

6

P08EE71

UNIT - III

- 5 a. Give the bus classification for load flow analysis, explaining the significance.
 - b. Obtain the load flow solution at the end of first iteration, with data given below. Assume all buses except bus 1, as PQ buses. Assume $V_1 = 1.04 | \underline{0}^{\circ} \text{ pu}$

• `	I' D
1)	Line Data
- <i>i</i>	

ii)	Bus	Data
-----	-----	------

Bus Code	R(pu)	X(pu)
1 - 2	0.05	0.15
1 - 3	0.1	0.3
2 - 3	0.15	0.45
2 - 4	0.1	0.3
3 - 4	0.05	0.15

Bus No.	P _i (pu)	Q _i (pu)
1	-	-
2	0.5	-0.2
3	-1.0	0.5
4	-0.3	-0.1

12

8

	3-4 0.03 0.13	
6 a.	Derive the expression in polar form for the typical diagonal elements of the sub matrices of the	8
	Jacobian in Newton-Raphson method of load flow analysis.	-
b.	Write notes on Fast Decoupled load flow analysis with assumptions.	6
c.	Compare NR and GS method of load flow solution with respect to,	6
	i) Time per iteration ii) Total Solution time iii) Acceleration of convergence.	0
	UNIT - IV	
7 a.	Draw and explain the performance curves of thermal plant.	6
b.	Explain and derive the necessary condition for economic operation of generators with	0
	transmission loss considered.	8
c.	The incremental fuel cost (in Rs/MWh) for a plant consisting of two units are,	
	$\left(\frac{dF_1}{dP_1}\right) = 0.008P_1 + 8 and \left(\frac{dF_2}{dP_2}\right) = 0.0096P_2 + 6.4$	
	Determine the economic operation schedule, if the maximum and minimum loading on each	6
	unit is 625 MW and 100 MW respectively. The load demand is 900 MW neglect transmission	
	losses.	
8 a.	Derive the necessary conditions for optimal operations of thermal power plants with	C
	transmission losses neglected.	6
b.	With usual notation, derive the generalized transmission loss formula and B-coefficients.	8
c.	In a system comprising two generating plants, the fuel coats (in Rs/hr) are	
	$F_1 = 0.004 P_1^2 + 8P_1 + 10$	
	$F_2 = 0.006P_2^2 + 9P_2 + 15$	6
		6

The system is operating on economic load despatch with $P_1 = P_2 = 500 MW$ and $\frac{\partial P_L}{\partial P_2} = 0.2$. Find the penalty factor of plant 1.

Contd.....4

6

UNIT - V

9 a.	Explain with necessary	y equations the sol	ution of swing equa	ation by point-by-poi	nt method. 10
------	------------------------	---------------------	---------------------	-----------------------	---------------

- b. With necessary equations describe the solution of swing equation using modified Euler's 10 method.
- 10 a. Explain the method of finding the transient stability of a given power system using Runge Kutta 10 method.
 - b. Explain with necessary expressions, the various synchronous machine models employed in the transient stability studies.

* * *