\section*{U.S.N | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Seventh Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; Dec - 2016/Jan - 2017
Computer Techniques in Power Systems
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit.

UNIT - I

1 a . Define the following with examples :
i) Oriented Graph
ii) Basic cutest
iii) Basic loop.
b. The basic incidence matrix is given below. Draw the oriented graph. Obtain loop incidence matrix.

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & -1 & 0 \\
0 & 1 & -1 \\
1 & 0 & -1
\end{array}\right]
$$

c. The oriented connected graph is shown in Fig. Q1(c). Obtain basic cutest incidence B and basic loop incidence matrix C .

6

$$
f i g \cdot Q \mid(C)
$$

2 a. Define the following terms with example :
i) Tree and Co-Tree ii) Primitive network iii) Augmented cutest Incidence matrix.
b. For the network shown in Fig. Q 2(b), consider elements (1, 2, 3) are tree branches and node-4 as reference. Obtain;
i) Bus incidence matrix
ii) Branch path incidence matrix K and hence verify $A_{b} K^{t}=U$

$$
\operatorname{Fiq} Q 2(b)
$$

c. Draw the oriented graph for the incidence matrix given in Table 2(c) below. Mark the relevant elements on the diagram. Also obtain \hat{A}.

Table 2(c)

Busle	1	2	3	4	5	6	7
P	1	0	0	-1	0	0	1
Q	-1	-1	-1	0	0	0	0
R	0	0	1	0	-1	1	0
S	0	0	0	0	0	-1	-1

UNIT - II
3 a . Derive the expression for bus admittance matrix using singular transformation technique.
b. For the power system shown in Fig. Q 3(b), Obtain $Y_{\text {bus }}$ by singular transformation and verify the result by inspection method.

4 a. Derive an expression for diagonal element $Z_{q q}$ of bus impedance matrix using building algorithm when branch is added to the partial network.
b. The series impedances of the lines are shown in Fig Q4(b). Taking the elements in the order develop $Z_{b u s}$ by building algorithm method.

c. For the network graph shown in Fig. 4(c) obtain $Y_{\text {bus }}$ with node 1 as reference using singular transformation. Neglect mutual coupling self impedance of elements are marked on the diagram.

UNIT - III

5 a . Give the bus classification for load flow analysis, explaining the significance.
b. Obtain the load flow solution at the end of first iteration, with data given below. Assume all buses except bus 1, as PQ buses. Assume $V_{1}=1.040$ pu
i) Line Data

Bus Code	$\mathrm{R}(\mathrm{pu})$	$\mathrm{X}(\mathrm{pu})$
$1-2$	0.05	0.15
$1-3$	0.1	0.3
$2-3$	0.15	0.45
$2-4$	0.1	0.3
$3-4$	0.05	0.15

6 a. Derive the expression in polar form for the typical diagonal elements of the sub matrices of the Jacobian in Newton-Raphson method of load flow analysis.
b. Write notes on Fast Decoupled load flow analysis with assumptions.
c. Compare NR and GS method of load flow solution with respect to,
i) Time per iteration
ii) Total Solution time
iii) Acceleration of convergence.

UNIT - IV
7 a. Draw and explain the performance curves of thermal plant.
b. Explain and derive the necessary condition for economic operation of generators with transmission loss considered.
c. The incremental fuel cost (in Rs/MWh) for a plant consisting of two units are,
$\left(\frac{d F_{1}}{d P_{1}}\right)=0.008 P_{1}+8$ and $\left(\frac{d F_{2}}{d P_{2}}\right)=0.0096 P_{2}+6.4$
Determine the economic operation schedule, if the maximum and minimum loading on each unit is 625 MW and 100 MW respectively. The load demand is 900 MW neglect transmission losses.

8 a. Derive the necessary conditions for optimal operations of thermal power plants with transmission losses neglected.
b. With usual notation, derive the generalized transmission loss formula and B-coefficients.
c. In a system comprising two generating plants, the fuel coats (in $\mathrm{Rs} / \mathrm{hr}$) are
$F_{1}=0.004 P_{1}^{2}+8 P_{1}+10$
$F_{2}=0.006 P_{2}^{2}+9 P_{2}+15$
The system is operating on economic load despatch with $P_{1}=P_{2}=500 \mathrm{MW}$ and $\frac{\partial P_{L}}{\partial P_{2}}=0.2$. Find the penalty factor of plant 1.

UNIT - V

9 a . Explain with necessary equations the solution of swing equation by point-by-point method.
b. With necessary equations describe the solution of swing equation using modified Euler's method.

10 a. Explain the method of finding the transient stability of a given power system using Runge Kutta method.
b. Explain with necessary expressions, the various synchronous machine models employed in the transient stability studies.

