6

8

6

6

8

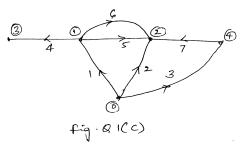
U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Seventh Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec - 2016/Jan - 2017 Computer Techniques in Power Systems

Time: 3 hrs Max. Marks: 100


Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. Define the following with examples:
 - i) Oriented Graph ii) Basic cutest iii) Basic loop.
- b. The basic incidence matrix is given below. Draw the oriented graph. Obtain loop incidence matrix.

$$A = \begin{vmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{vmatrix}$$

c. The oriented connected graph is shown in Fig. Q1(c). Obtain basic cutest incidence B and basic loop incidence matrix C.

- 2 a. Define the following terms with example:
 - i) Tree and Co-Tree ii) Primitive network iii) Augmented cutest Incidence matrix.
- b. For the network shown in Fig. Q 2(b), consider elements (1, 2, 3) are tree branches and node-4 as reference. Obtain:
 - i) Bus incidence matrix ii) Branch path incidence matrix K and hence verify $A_bK^t = U$

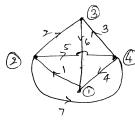
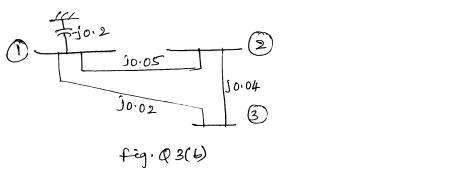


fig Q 2(6)


Contd.....2

c. Draw the oriented graph for the incidence matrix given in Table 2(c) below. Mark the relevant elements on the diagram. Also obtain \hat{A} .

Table 2(c)									
Bus\e	1	2	3	4	5	6	7		
P	1	0	0	-1	0	0	1		
Q	-1	-1	-1	0	0	0	0		
R	0	0	1	0	-1	1	0		
S	0	0	0	0	0	-1	-1		

UNIT - II

- 3 a. Derive the expression for bus admittance matrix using singular transformation technique.
 - b. For the power system shown in Fig. Q 3(b), Obtain Y_{bus} by singular transformation and verify the result by inspection method.

6

6

8

6

6

- c. Obtain the equivalent circuit of the transformer with off-nominal turns ratio.
- 4 a. Derive an expression for diagonal element Z_{qq} of bus impedance matrix using building algorithm when branch is added to the partial network.
 - b. The series impedances of the lines are shown in Fig Q4(b). Taking the elements in the order develop Z_{bus} by building algorithm method.

c. For the network graph shown in Fig. 4(c) obtain Y_{bus} with node 1 as reference using singular transformation. Neglect mutual coupling self impedance of elements are marked on the diagram.

8

12

8

6

6

8

6

6

8

6

UNIT - III

- 5 a. Give the bus classification for load flow analysis, explaining the significance.
 - b. Obtain the load flow solution at the end of first iteration, with data given below. Assume all buses except bus 1, as PQ buses. Assume $V_1 = 1.04 \boxed{0}$ pu
 - i) Line Data

Bus Code	R(pu)	X(pu)
1 - 2	0.05	0.15
1 - 3	0.1	0.3
2 - 3	0.15	0.45
2 - 4	0.1	0.3
3 - 4	0.05	0.15

ii) Bus Data

Bus No.	P _i (pu)	Q _i (pu)
1	-	-
2	0.5	-0.2
3	-1.0	0.5
4	-0.3	-0.1

- 6 a. Derive the expression in polar form for the typical diagonal elements of the sub matrices of the Jacobian in Newton-Raphson method of load flow analysis.
 - b. Write notes on Fast Decoupled load flow analysis with assumptions.
 - c. Compare NR and GS method of load flow solution with respect to,
 - i) Time per iteration ii) Total Solution time iii) Acceleration of convergence.

UNIT-IV

- 7 a. Draw and explain the performance curves of thermal plant.
 - b. Explain and derive the necessary condition for economic operation of generators with transmission loss considered.
 - c. The incremental fuel cost (in Rs/MWh) for a plant consisting of two units are,

$$\left(\frac{dF_1}{dP_1}\right) = 0.008P_1 + 8$$
 and $\left(\frac{dF_2}{dP_2}\right) = 0.0096P_2 + 6.4$

Determine the economic operation schedule, if the maximum and minimum loading on each unit is 625 MW and 100 MW respectively. The load demand is 900 MW neglect transmission losses.

- 8 a. Derive the necessary conditions for optimal operations of thermal power plants with transmission losses neglected.
 - b. With usual notation, derive the generalized transmission loss formula and B-coefficients.
 - c. In a system comprising two generating plants, the fuel coats (in Rs/hr) are $F_1 = 0.004P_1^2 + 8P_1 + 10$ $F_2 = 0.006P_2^2 + 9P_2 + 15$

The system is operating on economic load despatch with $P_1 = P_2 = 500 \, MW$ and $\frac{\partial P_L}{\partial P_2} = 0.2$.

Find the penalty factor of plant 1.

P13EE71 Page No... 4

UNIT - V

9 a.	Explain with necessary equations the solution of swing equation by point-by-point method.	10	
b.	With necessary equations describe the solution of swing equation using modified Euler's	10	
	method.	10	
10 a.	Explain the method of finding the transient stability of a given power system using Runge Kutta	10	
	method.		
b.	Explain with necessary expressions, the various synchronous machine models employed in the		
	transient stability studies.		