9	goneso	U\$34	900	9
E	X		2	1
T	F	ololo Sec	~	6 2
P	As	E E	63	F.
200		Series Contract	1	2
1	OLUTON :	f ENCINE		

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Eighth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; June - 2016 Energy Auditing and Demand Side Management

Energy Auditing and Demand Side Management *Max. Marks: 100*

Time: 3 hrs Max. Marks: 100

Notes: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

1 a.	Explain the energy conservation techniques used to reduce energy lost.	5
b.	With respect to the supply system summarize the points in distribution code.	5
c.	Which are the inverses addressed by Energy Conservation Act 2001?	5
d.	With a vector diagram explain the components of a power triangle.	5
2 a.	Explain:	
	i) Time Value of money concept	12
	ii) Payback analysis	1.2
	iii) Depreciation.	
b.	How long will it take for a sum of money to double, when accumulating at 5% interest,	
	i) On simple interest basis	8
	ii) If interest is compounded annually	0
	iii) If interest is compounded quarterly.	
3 a.	Explain Ten steps methodology for detailed energy auditing.	10
b.	Explain any four key instruments used for energy auditing.	6
c.	Mention the audits required for constructing energy use profile.	4
4 a.	Draw a single line diagram for a typical a.c. supply scheme and explain.	7
b.	What is ABT? Write broad features of ABT design.	7
c.	Write a note on energy Audit.	6
	PART - B	
5 a.	Explain:	0
	i) Synchronous condenser ii) Energy efficient motor.	8
b.	Derive an expression for most economical power factor considering constant active power.	
	Draw relevant vector diagram.	6
c.	A single phase motor connected to 400 V, 50 Hz, supply takes 31.7 A at a power factor 0.7	
	lagging. Calculate the capacitance required in parallel with the motor to raise the power	6
	factor to 0.9 lagging.	

P	D8EE81	
6 a.	Explain the concept of evolution of DSM and also explain the benefits of DSM.	6
b.	With necessary flow diagram, explain planning and implementation of DSM.	8
c.	Write a note on good practices in lighting.	6
7 a.	Explain:	
	i) Load priority technique	12
	ii) Peak clipping and valley filling	12
	iii) Tariff option for DSM	
b.	Discuss the factors with restrain to consumers to move towards energy conservation.	8
8 a.	Explain energy conservation opportunities in agricultural sector in illumination systems.	6
b.	Explain plant level organization of energy conservation programs.	8
c.	Explain the factors which influence customer participation in DSM.	6

* * * *