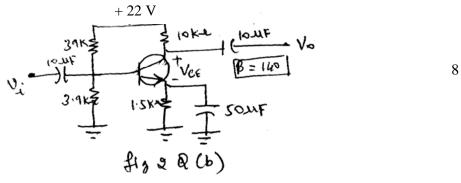


Note :*i*) Answer *FIVE* full questions, selecting *ONE* full question from each *Unit*. *ii*) Assume suitable missing data if any.

Unit - I

- 1 a. Discuss the approximate and piecewise linear model of a diode.
 - b. Determine the current I_1 , I_2 and I_{D2} for the network shown below in Fig. (b)

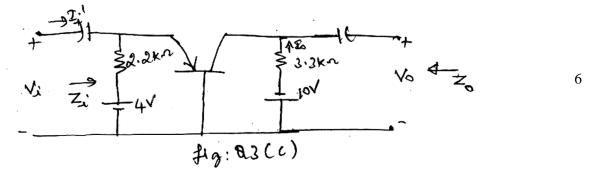

6

8

6

6

- c. What is a clamper? With a neat circuit and waveform explain positive clamper.
- 2 a. What is biasing of a transistor? Explain the factors that affect selection of Q point anywhere in active region for the transistor to operate as an amplifier.
 - b. Determine the dc bias voltage V_{CE} and the current I_C for the voltage divider configuration of Fig. 2 (b) shown below.



c. With the help of a neat diagram explain the use of transistor as an inverter.

Unit - II

- 3a. What are the advantages of using hybrid model to represent the transistor? Explain how $h \frac{6}{6}$
 - b. For the CE amplifier circuit derive the expression for A_I , Z_i , A_v and V_0 in term of transistor h parameter.

c. For CB configuration shown below in Fig.3 (c), determine Z_i , Z_0 , A_v and V_i

4 a.	Briefly explain the miller effect capacitance.	10	
b.	Discuss the factors that affect the low frequency response of a BJT – CE amplifier.	10	
Unit - III			
5 a.	With a neat diagram, determine the expression for Z_{in} , A_v , Z_0 for a Darlington emitter follower.	10	
b.	Compare the cascade and cascode connection. List the advantages and disadvantages.	10	
6 a.	Explain the feedback connection types with a neat diagram and tabulate the summary of	10	
	gain without feedback and gain with feedback.		
b.	What are the effects of negative feedback?	4	
c.	Determine the voltage gain, input and output impedance with feedback for voltage series		
	feedback having A = - 100, $R_i = 10 \text{ k}\Omega$, $R_0 = 20 \text{ k}\Omega$ for feedback of	6	
	(i) $\beta = -0.1$ (ii) $\beta = -0.5$		
Unit - IV			
7 a.	With a net sketch explain the classification of power amplifier based on the location of Q – point?	10	

- b. Derive an equation for second harmonic distortion in terms of current. 10
- 8 a. Explain the working of a transformer coupled class A amplifier and prove that the maximum 10 efficiency for the same is 50%.
 - b. Calculate the efficiency of a transformer coupled class A amplifier for a supply of 12 V and output of 12 V.
 - c. For a class B amplifier providing a 20V peak signal to a 16Ω loud speaker and a power 6 supply of VCC = 30V, determine the input power, output power and circuit efficiency.

Unit - V

9 a.	Explain how a feedback circuit can be used as an oscillator.	6
------	--	---

b. Calculate operating frequency of a BJT phase – shift oscillator for R = 6 k Ω , C = 1500 pF, R_c = 18 k Ω .

Contd...3

P08EC32

Page No... 3

- c. Explain the characteristics of a quartz crystal with a neat diagram explain the crystal 10 oscillator in parallel resonant circuits.
- 10 a. With the help of transfer characteristics explain how trans conductance of a FET can be obtained using graphical method.
 - b. Design the FET fixed bias circuit for the following specification given $A_v = 10$, $I_{DSS} = 10 \text{ mA}, V_P = -4V, y_{OS} = 20 \text{ } \mu\text{s}, V_{DD} = 30 \text{ } V, C_1 = 0.1 \text{ } \mu\text{F}, R_G = 10 \text{ } M\Omega.$ 8
 - c. Write the circuit symbol and small signal ac model of n channel D MOSFET and explain.

* * * * *