Page No... 1 U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E. – Electronics and Communications Engineering Semester End Examination; Dec. - 2014 **Engineering Electromagnetics** Time: 3 hrs Max. Marks: 100 *Note*: *i*) Answer **FIVE** full questions, selecting **ONE** full question from each Unit. ii) Assume suitable missing data if any. Unit - I 1 a. Four point charges, each 20 μ C are on the x and y axis at ± 4 m. Find the force on a 200 μ C 6 point charge at (0, 0, 3) m. b. Derive an equation for the Electric field intensity at a point along the axis at a distance of 6 'X' from the center of circular line of charge. c. State Guass divergence theorem. Given that $D = \frac{10x^3}{3} \hat{a}x \frac{C}{m^2}$. Evaluate both sides of the 8 divergence theorem for the volume of a cube 2 m on the edge centered at the origin and with edges parallel to the axes. 2 a. Q_1 and Q_2 are the point charges located at (0, -4, 3) and (0, 1, 1). If Q_1 is 2 nC, find Q_2 such 6 that the force on a test charge at (0, -3, 4) has no Z component. b. Derive the equation for electric field intensity due to infinite line of charge at a point P 8 which is located at a normal distance of 'r' from the center of infinite line of charge. с. The flux density $\vec{D} = \frac{r}{3} \hat{a}_r \frac{nC}{m^2}$ is in the free space find; (i) \vec{E} at r = 0.2 m (ii) Total electric 6 flux leaving the sphere of r = 0.2 m iii) Total charge within the sphere of r = 0.3 m. Unit - II A potential field is given by V = 100 e^{-5x} sin 3y cos 4z volt let point $P\left(0.1, \frac{\pi}{12}, \frac{\pi}{24}\right)$ be 3a. 8 located at a conductor free space boundary. At point P, find the magnitude of i) E ii) E_t iii) E_n iv) \vec{D} v) D_n vi) ρ s b. Explain the conservative nature of electric field and shown that $E = -\nabla V$ 6 c. Derive continuity equation of current both in integral form and differential form. 6 4 a. Starting from Gauss law in point form obtain Laplace's and Poisson's equation. 4 b. Derive boundary conditions between two perfect dielectrics. 8 c. In spherical coordinates V = 0 at r = 0.1m and V = 100 volt at r = 2m. Assuming free space 8 between these concentric shells, find \vec{E} and \vec{D} .

Unit - III

5 a. State and prove Ampere's Law. A radial field $\vec{H} = \frac{2.39 \times 10^6}{r} \cos \phi \hat{a}_r \frac{A}{m}$ exist in free space.

Find the magnetic flux crossing the surface defined by $0 \le \phi \le \frac{\pi}{2}$ and $0 \le z \le 1 m$.

8

P08EC34 Page No 2		
b.	Explain the concept of magnetic scalar and vector potential.	6
c.	State and prove Stoke's theorem.	6
6 a.	Derive an expression for force on differential current element moving in a steady magnetic field.	6
b.	Obtain magnetic torque and magnetic dipole moment for a rectangular planar coil carrying current I placed in XY plane and parallel to the magnetic field.	8
c.	A current element $I_1 \overrightarrow{\Delta I_1} = 10^5 \hat{a}_z Am$ is located at P ₁ (1, 0, 0) while a second element at	
	P ₂ (-1, 0, 0). Is $I_2 \overline{\Delta L_2} = 10^{-5} \left(0.6 \hat{a}_x - 2 \hat{a}_y + 3 \hat{a}_z \right) Am$ both in free space. Find vector force on	6
	$I_2 \overrightarrow{\Delta L_2}$ by $I_1 \overrightarrow{\Delta L_1}$.	
Unit - IV		
7 a.	Derive the boundary condition at the interface between two different magnetic materials.	6
b.	Region 1 has $\mu r_1 = 1.5$, region 2 has $\mu r_2 = 1$. The flux density $\vec{B} = 1.2\hat{a}x + 0.8\hat{a}y + 0.4\hat{a}zT$ is	
	incident at boundary from region 1. Calculate i) \vec{B}_2 ii) angle of incidence iii) angle of	8
	reflection. The boundary is at $z = 0$ and normal to $z - axis$.	
c.	Derive equation for inductance of co-axial cable. Calculate the inductance of a 10m length of co – axial cable filled with a material for which $\mu_r = 80$ and radii of inner and outer conductors are 1 mm and 4 mm respectively.	6
8 a.	Explain the concept of conduction current density and displacement current density. If the applied voltage is sinusoidal what is the ratio of $\left \frac{J_C}{J_D} \right $.	8
b.	List the Maxwell's equation both in integral form and differential form.	8
c.	Write a note on Retarded potential.	4
Unit - V		
9 a.	Sate and prove Poynting theorem starting from Maxwell's equation.	8
b.	For TEM ware define the terms; i) Propagation constant ii) Intrinsic impedance. A 300 MHz uniform plane wave propagates through fresh water for which $\sigma = 0$, $\mu_r = 1$ and $\epsilon_r = 78$. Calculate; i) attenuation constant ii)Phase constant iii) Wave length iv) Intrinsic impedance	8
c.	Find the skin depth and propagation constant at a frequency of 1.6 MHz in aluminium where $\sigma = 38.2 \text{ MO/m}$ and $\mu_r = 1$.	4
10 a	. Define the terms; i) Standing wave ratio iii) reflection Coefficient. What is the relationship between SWR and reflection co-efficient?	6
b.	Explain reflection of uniform plane wave with normal incidence at a plane dielectric boundary.	8
c.	Explain the following types of wave polarization, i) Linear ii) Elliptical iii) Circular.	6

* * * * *