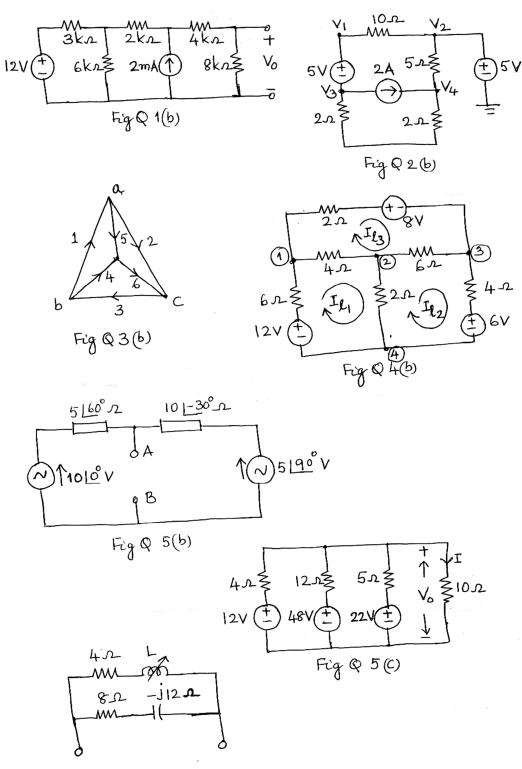
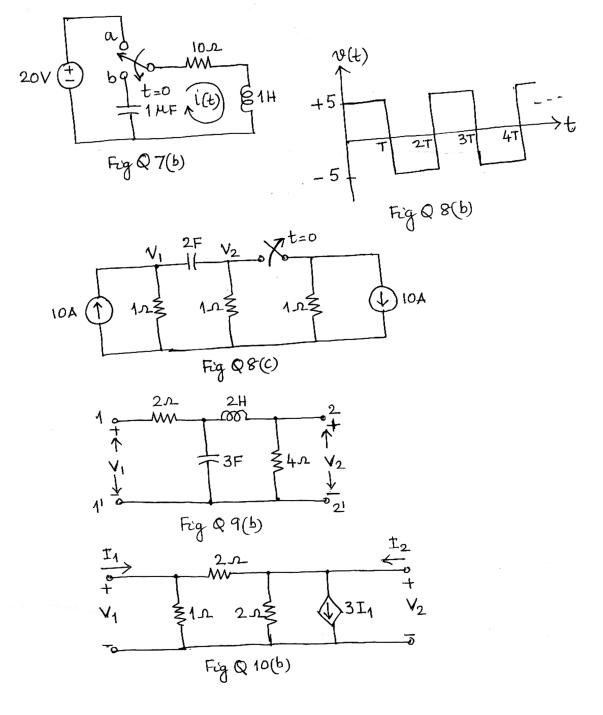
P08EC35 Page No 1			
U.S.N			
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E. – Electronics and Communication Engineering Semester End Examination; Dec 2014 Electrical Circuit Theory			
Time: 3 hrs Max. Marks: 100			
<i>Note</i> : <i>i</i>) Answer FIVE full questions, selecting ONE full question from each Unit. <i>ii</i>) Assume suitable missing data if any.			
Unit - I			
1 a. Distinguish between the following with suitable example:			
i) Lumped and distributed networks ii) Network and circuit iii) Passive and active 1 networks.	0		
b. Using repeated application of source transformation find V_0 in the circuit of Fig. Q1 (b). Also find the power dissipated in 8 k Ω resistor.	0		
2 a. Illustrate the method of mesh analysis with an example and develop the mesh equations in			
the matrix forms: 1	0		
[Z] [I] = [V]			
b. For the network shown in Fig. Q 2(b), determine the node voltages V_1 , V_2 , V_3 and V_4 using	0		
nodal analysis. Also determine the power dissipated in the 10 Ω resistor.			
Unit - II			
	0		
(i) Graph (ii) Sub graph iii) Tree iv) Cut – set v) Tie – set.b. For the oriented graph shown in Fig. Q 3(b), write the complete incidence matrix. Also write			
the cut – set and tie – set matrices considering branches 4, 5 and 6 as twigs.	0		
	0		
	U		
	0		
	0		
as the tree branches.			
Unit - III	~		
	6		
b. Determine Thevenin equivalent circuit as seen from terminals A – B of the network shown	~		
in Fig. Q 5(b). Find the value of load Z_L to be connected across A - B so that maximum	8		

c. Determine the voltage V_0 , using Millman's theorem in the circuit of Fig. Q 5(c).


6


P08EC35

Page No... 2

6 a.	Define "Quality factor" and "Bandwidth" and establish a relationship between them in a	6	
	series resonant circuit.		
b.	A voltage $V = 100 \sin \omega t$ is applied to an RLC series circuit. At resonant frequency the		
	voltage across the capacitor was found to be 400 V, rms. The bandwidth is 75 Hz. The	7	
	impedance at resonance is 100 Ω . Find the resonant frequency, quality factor and the		
	constants (R, L, C) of the circuit.		
c.	Find the values of L for which the circuit shown in Fig. 6 (c) resonates at $w = 5000$ rad / sec.	7	
Unit - IV			
7 a.	What is the need to study initial conditions in networks? Show that,		
	i) The current through an inductor cannot change instantaneously.	10	
	ii) The voltage across a capacitor cannot change instantaneously.		
b.	In the network shown in Fig. Q 7(b) the switch K is changed from position a to position b at		
	t = 0, steady state having been reached in position a. Find the values of <i>i</i> , $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at	10	
	t = O +		
8 a.	State and prove final value theorem as applied to Laplace transforms.	5	
b.	Obtain the Laplace transform of the periodic waveform shown in Fig. Q 8(b).	6	
c.	The switch in the network of Fig. Q 8(c) opens at $t = 0$. Use Laplace transformation	9	
	analysis to determine the voltage across the capacitor for $t \ge 0$.	9	
Unit - V			
9 a.	What are poles and zero of a network function? Explain the restrictions on the pole and zero	10	
	locations for transfer functions.	10	
b.	For the network shown in Fig. Q 9(b), determine the transfer function $\frac{V_2}{V_1}$, the driving point	10	
	impedance z_{11} and the driving point admittance Y_{11} .		
10 a.	. Define h – parameters. Show that the transmission parameter matrix of a cascade of two –		
	port networks is the product of the transmission parameter matrices of the individual two –	10	
	port networks.		
b.	Determine the y – parameters of the two – port network shown in Fig. Q 10 (c). Also draw		
	the y – parameter equivalent circuit.	10	

Contd....3

* * * * *