P08EC36 Page No... 1

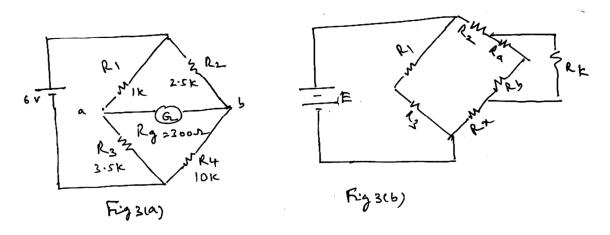
U.S.N					

8

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. – Electronics and Communications Engineering Semester End Examination; Dec. - 2014 **Measurements and Instrumentation**


Time: 3 hrs

Max. Marks: 100 *Note:* i) Answer *FIVE* full questions, selecting *ONE* full question from each Unit. ii) Assume suitable missing data if any. Unit - I 1 a. Define three following terms as applied to an electronic instrument; 6 i) Accuracy ii) Prevision iii) Resolution. b. Convert a basic D'arsonaval movement with an internal resistance of 50 Ω and a full scale deflection of 2 mA current into a multi range DC voltmeter with voltage ranges of 0 – 10 V, 10 0-50 V, 0-100 V and 0-250 V. Draw the multipliers connected in series with resistance values. c. With the help of neat diagram explain the principle of a successive approximation DVM. 4 2 a. Define the following terms as applied to an electronic instrument; 4 i) Gross error ii) Systematic error b. Calculate the value of multiplier resistance for the multiple range dc voltmeter (5 V, 10 V 6 and 50V) having $I_{fsd} = 50 \mu A$, $R_m = 1 k\Omega$. c. With the help of block diagram explain the working of a integrating type DVM. 10 Unit - II Find the current through the galvanometer of an unbalanced wheat stone bridge Fig. 3 (a). 6 b. Find the value of R_x in the Kelvin's bridge as in Fig. 3 (b) with $Ra/R_b = 1000$, $R_1 = 5 \Omega$, 4 $R_1 = 0.5 R_2$ 10 c. With the help of neat diagram explain the working of a Wein's bridge. 4 a. A capacitance comparison bridge is used to measure a capacitance impedance at a frequency of 2 kHz. Bridge constants at balance are $C_3 = 100 \mu F$, $R_1 = 10 k\Omega$, $R_2 = 50 k\Omega$, 6 $R_3 = 100 \text{ k}\Omega$. Find the equivalent series circuit of the unknown impedance. b. With neat diagram explain the working of a Maxwell's bridge. What are its limitations, 8 advantages and applications? c. Explain how the effect of stray capacitances in eliminated using Wagner's earth connection. 6 **Unit - III** 5 a. What are the parameters an electrical transducer must have? Explain. 6

b. List eight important advantages of resistance thermisters.

P08EC36	Page No 2

c.	What are the advantages and limitations of thermister?	6
6 a.	What are the important points to be reimbursed while selecting a transducer? Explain.	8
b.	A resistance strain gauge with a gauge factor of 2 in cemented to a steel member, which is	
	subjected to a strain of $1x10^{-6}$. If the original resistance value of the gauge in 130 Ω .	4
	Calculate change in resistance.	
c.	List important desirable characteristics of resistance wire strain gauge.	8
	Unit - IV	
7 a.	Write an explanatory note on Piezo electric transducer.	8
b.	What are the advantages of using LEDs in electronic displays? Explain.	8
c.	What is a basic sine wave generator?	4
8 a.	List important features of LCDS.	6
b.	Explain the construction, characteristics and one application of phototransistor.	8
c.	With neat diagram explain the working of AF sine and square wane generator.	6
	Unit - V	
9 a.	Explain the working of delayed time base oscilloscope.	10
b.	Explain the working of a frequency selective wave analyzer.	10
10 a.	Write explanatory notes on:	
	i) Bi stable storage CRT	10
	ii) Variable persistence storage CRT.	
b.	Explain Wien's bridge and Bridge T – Network method of harmonic distortion analyzer.	10

* * * * *