P13EC33	Page No 1
	U.S.N
	P.E.S. College of Engineering, Mandya - 571 401
	(An Autonomous Institution affiliated to VTU, Belgaum)
Third	Semester, B.E. – Electronics and Communications Engineering
	Semester End Examination; Dec. – 2014
	Digital Circuit Design
Time: 3 hrs	Max. Marks: 100

Note : *i*) Answer *FIVE* full questions, selecting *ONE* full question from each Unit. ii) Assume suitable missing data if any..

Unit - I

1 a.	With the help of circuit diagram explain the operation of	8
	i) 2 input CMOS NAND gate ii) 2 input CMOS NOR gate.	0
b.	Explain with diagram the operation of 2 input TTL NAND gate.	7
c.	Explain the following terms with respect to gates.	5
	i) Output switching time ii) Fan-out and Fan-in.	5
2 a.	Explain with the help of circuit diagram the operation of	8
	(i) 2 input NMOS NAND gate ii) 2 input PMOS NOR gate.	0
b.	Explain the construction and operation of;	12
	i) NMOS enhancement – mode FET ii) PMOS enhancement mode FET	14

Unit – II

- Design a combinational logic circuit with 4 inputs a, b, c, d and one output f, which goes 3a. 7 high whenever LSB of input or MSB of input is high. Implement using two level basic gates structure.
 - b. Write the Boolean expression for the schematic shown in fig. 1. 5
 - c. Obtain minimal SOP and minimal POS expression for the function 8 $f(a,b,c,d) = \overline{abd} + bcd + a\overline{bd} + b\overline{cd}$ using K-map.
- 4 a. Find all the prime implicants for the following function using Quine Mccluskey method. 12 $f(a,b,c,d) = \pi M(0,2,3,4,5,12,13) + \pi d(8,10)$
 - b. For the function $f(a,b,c,d) = \sum m(3,4,5,7,8,11,12,13,15)$ obtain minimal product and 8 minimal sum using MEV method.

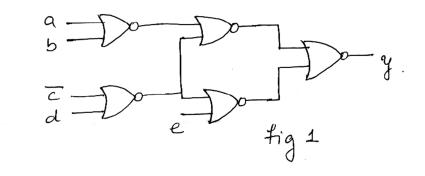
Unit - III

5 a.	Explain the working of look ahead carry adder derive the equation for sum and carry.	10
b.	Design and implement using basic gates 2 bit magnitude comparator.	10

b. Design and implement using basic gates 2 bit magnitude comparator.

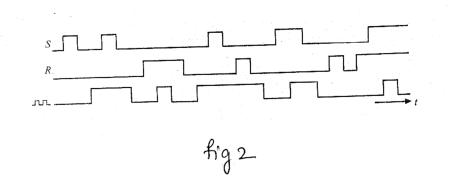
Contd...2

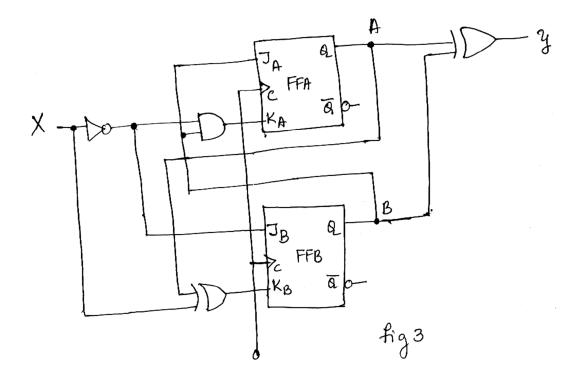
P13	EC33 Page No 2	
6 a.	Implement full adder and full subtractor using multiplexer.	10
b.	Implement the following functions using a single 3 to 8 line decodes and external gates.	
	$f_1(a,b,c) = \pi M(2,3,4,5,7)$	10
	$f_2(a,b,c) = \pi M(0,2,4,6,7)$	
	Unit - IV	
7 a.	Explain how S-R latch can be used as key denouncer.	6
b.	Obtain the characteristics equation for SR, JK, D and T flip flop using K – map.	8
c.	Draw the circuit of basic bistable element and explain its operation.	6
8 a.	With the help of neat diagram explain the working of master slave SR FF.	8
b.	What is edge triggering? Explain the working of +ve edge triggered $D - FF$	6
c.	Draw the output waveform for a gated SR Latch, if S, R and clock inputs are as shown in	6


Fig. 2.

Unit - V

9 a. Design a 4 – bit register using +ve edge triggered D – FF to operate as per the following table.


Mode select		Register operation
\mathbf{S}_1	\mathbf{S}_0	
0	0	Hold
0	1	Clear
1	0	Complement the content
1	1	Circular shift register


- b. Design a mod 77 synchronous counter by cascading two 4 bit binary counter.
 c. Construct a 4 bit ring counter using a universal shift register.
 10 a. Design a synchronous mod 6 counter using clocked JK FF.
 10
- b. Construct the excitation table, Transition table, State table and State diagram for the Moore 10 sequential circuit shown in Fig. 3.

6

8

* * * * *