P13	EC34 Page No 1	
\$		
and the second se	P.E.S. College of Engineering, Mandya - 571 401	
N.	(An Autonomous Institution affiliated to VTU, Belgaum)	
	Third Semester, B.E Electronic and Communication Engineering	
	Semester End Examination; Dec 2014	
Tim	The: 3 hrs Max. Marks: 100	
Note : i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Assume suitable missing data if any. Unit - I		
1 a.	Define a signal, and explain the classification of signals.	8
b.	Sketch the following signals. (i) $u(n+2)-u(n-3)$ (ii) $u(-n+2)$. $u(n)$	6
c.	Find whether the following signals are periodic or not.	6
	(i) $x(t)=2\cos(10t+1)-\sin(4t-1)$ (ii) $x(t)=\cos 60\pi t + \sin 50\pi t$.	0
2 a.	Find the even and odd components of the following signals	
	(i) $x(t) = \cos t + \sin t + \cos t t \sin t$. (ii) $x(n) = \{-2, 1, 2, -1, 3\}$	6
b.	Check whether following systems are static or dynamic, linear or non-linear, casual or non	
	casual, time invariant or time variant.	10

(i)
$$y(n) = x(n) x(n-1)$$
 (ii) $y(n) = cos\{x(n)\}$ (iii) $y(n) = \log_{10} |x(n)|$ (iv) $y(n) = x(n)u(n)$

c. Find the overall operator of a system whose output signal y(n) is given as

 $y(n) = \frac{1}{3}(x(n) + x(n-1) + x(n-2))$ and draw the block diagram representation.

Unit - II

4

10

5

~ · · · **^**

3 a. An LT1 system has impulse response $h(n) = \begin{cases} 1, & n = \pm 1 \\ 2, & n = 0 \\ 0 & otherwise \end{cases}$

Determine the output of this system in response to the input $x(n) = \begin{cases} 2, & n = 0\\ 3, & n = 1\\ -2, & n = 2\\ 0, & otherwise \end{cases}$

b. Determine the step response of the system described by difference equation. y(n) + 4y(n-1) + 4y(n-2) = x(n)

c. Determine the convolution sum of two sequences

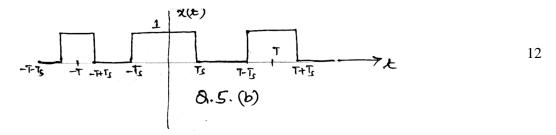
$$x(n) = \{1, 4, 3, 2\}$$

$$h(n) = \{1, 3, 2, 1\}$$

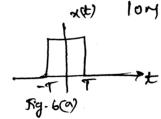
5

Page No... 2

4 a. Test if the following systems are stable or not

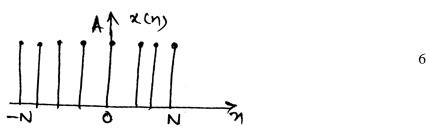

(i)
$$y(n) = \cos x(n)$$
 (ii) $y(n) = \sum_{k=-\infty}^{n+1} x(k)$ 8

b. Find the convolution of the following signals


(i)
$$x(n) = \cos \pi n \ u(n), h(n) = \left(\frac{1}{2}\right)^n u(n)$$
 (ii) $x(n) = \left(\frac{1}{3}\right)^{-n} u(-n-1), h(n) = u(n-1)$ 12
(iii) $x(n) = \left(\frac{1}{2}\right)^n u(n); h(n) = u(n) - u(n-10)$

Unit - III

- 5 a. Find the DTFS representation for $x(n) = \cos(\frac{\pi}{8}n + \phi)$ and draw its magnitude and phase response.
 - b. Determine the Fourier series representation for the square wave depicted in Fig. below.


- 6 a. Find the Fourier transform of x(t) given below and its magnitude and phase spectrum
 - $x(t) = \begin{cases} 1, & -T \le t \le T \\ 0 & |t| > T \end{cases}$

- b. Explain any two properties of Fourier transform
- c. Find the Fourier transform of $x(t) = 1 e^{-|t|} \cos \Omega_0 t$

Unit - IV

7 a. Find the DTFT of a rectangular pulse given below and draw its magnitude Response.

P13EC34

8

10

6

4

b. Explain the following properties of DTFT	10
(i) Convolution property (ii) Frequency shifting property (iii) Parseval's theorem.	10
c. State and explain sampling theorem.	4
8 a Find the DTFT of the following :	C
(i) $x(n) = \{1, -1, 2, 2\}$ (ii) $x(n) = 2^n u(n)$ (iii) $x(n) = (0.5)^n u(n) + 2^{-n} u(-n-1)$	6
b. Determine the Nyquist sampling rate and Nyquist sampling intervals for the following	
Signals.	6
(i) $Sin c^2(200\pi t)$ (ii) $Sin c(200\pi t) + 3sinc^2(120\pi t)$ (iii) $Sin c(100\pi t) sinc(200\pi t)$	
c. Explain the Basic Discrete time signal processing system	8
Unit - V	
9 a Prove the following properties of Z-transform mentioning ROC.	
(i) Time shifting property	6
(ii) Differentiation in the Z domain.	
b. Identify the ROC associated with the Z-transforms for each of the following signals	
$(1)^n$ $(1)^n$	

$$x(n) = \left(-\frac{1}{2}\right)^{n} u(-n) + 2\left(\frac{1}{4}\right)^{n} u(n)$$

$$y(n) = \left(-\frac{1}{2}\right)^{n} u(n) + 2\left(\frac{1}{4}\right)^{n} u(n)$$

$$w(n) = \left(-\frac{1}{2}\right)^{n} u(-n) + 2\left(\frac{1}{4}\right)^{n} u(-n)$$

$$\int_{-\infty}^{\infty} (-1)^{n} u(-n) = (-1)^{n} u(-n)$$

c. Find the Z-transform of the signal
$$x(n) = \left[n \left(-\frac{1}{2} \right)^n u(n) \right] * \left(\frac{1}{4} \right)^{-n} u(-n)$$
 8

10 a. Find the Inverse Z-transforms of $x(z) = \frac{z^3 - 10z^2 - 4z + 4}{2z^2 - 2z - 4}$ with ROC |z| < 1 8

- b. Consider the system described by the difference equation y(n) - 0.9y(n-1) = x(n). Find the output if the input is x(n) = u(n) and the initial condition 6 on the output is y(-1) = 2
- c. A system has the transfer function

$$H(z) = \frac{2}{1 - 0.9e^{j\frac{\pi}{4}}z^{-1}} + \frac{2}{1 - 0.9e^{-j\frac{\pi}{4}}z^{-1}} + \frac{3}{1 + 2z^{-1}}$$

Find the impulse response assuming the system is

(i) stable (ii) Causal (iii) Can this system be stable and casual?