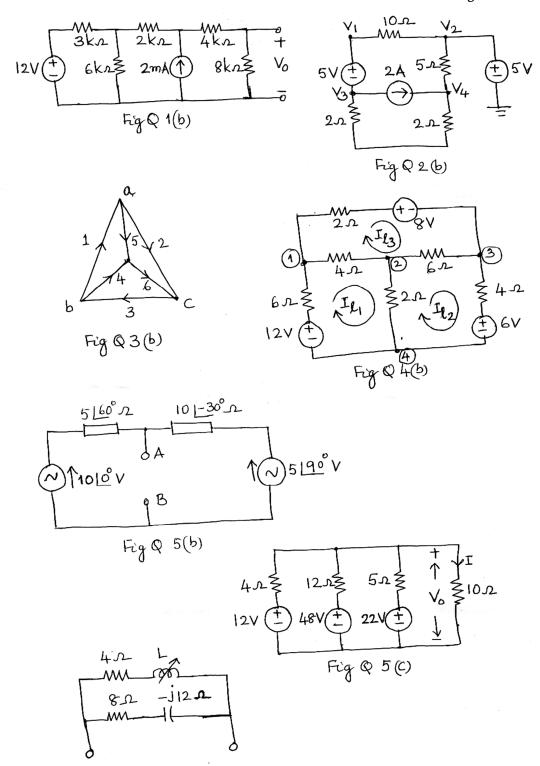
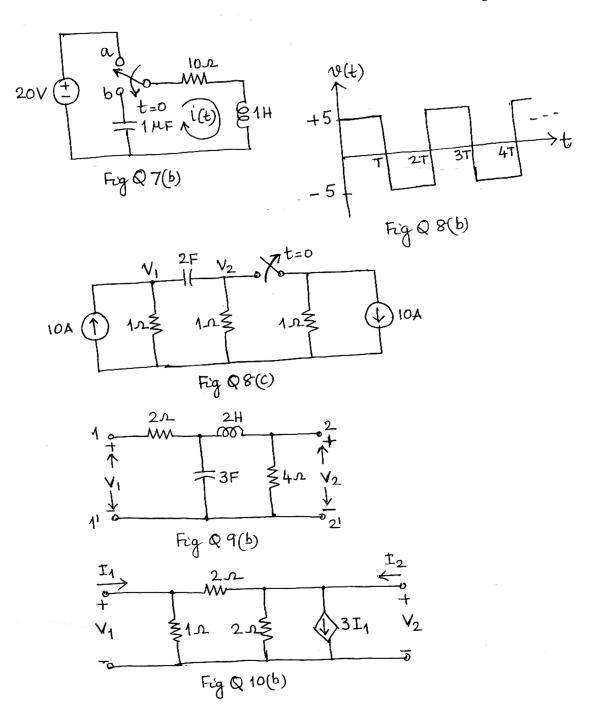
P13EC35 Page No... 1

U.S.N					
0.2.					

P.E.S. College of Engineering, Mandya - 571 401


(An Autonomous Institution affiliated to VTU, Belgaum)


Third Semester, B.E. – Electronics and Communication Engineering Semester End Examination: Dec. - 2014

Electrical Network Analysis

Time: 3 hrs Max. Marks: 100 Note: i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Assume suitable missing data if any. Unit - I 1 a. Distinguish between the following with suitable example: i) Lumped and distributed networks ii) Network and circuit iii) Passive and active 10 networks. b. Using repeated application of source transformation find V_0 in the circuit of Fig. Q1 (b). 10 Also find the power dissipated in 8 k Ω resistor. 2 a. Illustrate the method of mesh analysis with an example and develop the mesh equations in 10 the matrix forms: [Z][I] = [V]b. For the network shown in Fig. Q 2(b), determine the node voltages V₁, V₂, V₃ and V₄ using 10 nodal analysis. Also determine the power dissipated in the 10 Ω resistor. Unit - II 3 a. Define the following terms with respect to network topology. Give examples. 10 (i) Graph (ii) Sub graph iii) Tree iv) Cut – set v) Tie – set. b. For the oriented graph shown in Fig. Q 3(b), write the complete incidence matrix. Also write 10 the cut – set and tie – set matrices considering branches 4, 5 and 6 as twigs. 4 a. Explain with examples the principles of duality. 10 b. For the network shown in Fig. Q4 (b), calculate $I_{l_1} I_{l_2}$ and I_{l_3} using graph theory and 10 network equilibrium equation based on KVL. Select the branches of the central T - network as the tree branches. **Unit - III** 6 5 a. State superposition theorem. Explain with an example. b. Determine Thevenin equivalent circuit as seen from terminals A – B of the network shown in Fig. Q 5(b). Find the value of load Z_L to be connected across A - B so that maximum 8 power is delivered to Z_L. Find the maximum power. c. Determine the voltage V_o, using Millman's theorem in the circuit of Fig. Q 5(c). 6

6 a.	a. Define "Quality factor" and "Bandwidth" and establish a relationship between them in a					
	series resonant circuit.	6				
b.	A voltage $V = 100 \sin \omega t$ is applied to an RLC series circuit. At resonant frequency the					
	voltage across the capacitor was found to be 400 V, rms. The bandwidth is 75 Hz. The	7				
	impedance at resonance is 100Ω . Find the resonant frequency, quality factor and the					
	constants (R, L, C) of the circuit.					
c.	Find the values of L for which the circuit shown in Fig. 6 (c) resonates at $w = 5000 \text{ rad} / \text{sec}$.	7				
	Unit - IV					
7 a.	What is the need to study initial conditions in networks? Show that,					
	i) The current through an inductor cannot change instantaneously.	10				
	ii) The voltage across a capacitor cannot change instantaneously.					
b.	In the network shown in Fig. Q 7(b) the switch K is changed from position a to position b at					
	$t = 0$, steady state having been reached in position a. Find the values of i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at	10				
	t = O+					
8 a.	State and prove final value theorem as applied to Laplace transforms.	5				
b.	Obtain the Laplace transform of the periodic waveform shown in Fig. Q 8(b).	6				
c.	c. The switch in the network of Fig. Q $8(c)$ opens at $t=0$. Use Laplace transformation analysis					
	to determine the voltage across the capacitor for $t \ge 0$.	9				
	Unit - V					
9 a.	What are poles and zero of a network function? Explain the restrictions on the pole and zero locations for transfer functions.	10				
b.	For the network shown in Fig. Q 9(b), determine the transfer function $\frac{V_2}{V_1}$, the driving point	10				
	impedance z_{11} and the driving point admittance Y_{11} .					
10 a.	Define h – parameters. Show that the transmission parameter matrix of a cascade of two –					
	port networks is the product of the transmission parameter matrices of the individual two -	10				
	port networks.					
b.	Determine the y – parameters of the two – port network shown in Fig. Q 10 (c). Also draw	10				
	the v – parameter equivalent circuit	10				

* * * * *