P13EC36 Page No... 1

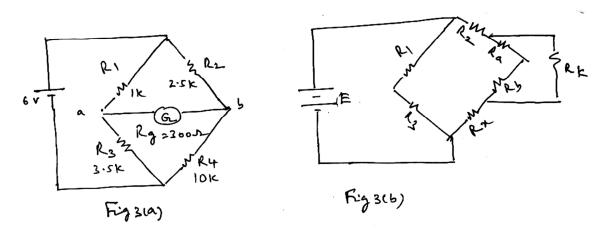
U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. – Electronics and Communications Engineering Semester End Examination; Dec. - 2014

Measurements and Instrumentation


Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each Unit.

	ii) Assume suitable missing data if any.	
	Unit - I	
l a.	Define three following terms as applied to an electronic instrument;	6
	i) Accuracy ii) Prevision iii) Resolution.	6
b.	Convert a basic D'arsonaval movement with an internal resistance of 50 Ω and a full scale	
	deflection of 2 mA current into a multi range DC voltmeter with voltage ranges of $0-10 \text{ V}$,	10
	$0-50\ V, 0-100\ V$ and $0-250\ V.$ Draw the multipliers connected in series with resistance	10
	values.	
c.	With the help of neat diagram explain the principle of a successive approximation DVM.	4
2 a.	Define the following terms as applied to an electronic instrument;	1
	i) Gross error ii) Systematic error	4
b.	Calculate the value of multiplier resistance for the multiple range dc voltmeter (5 V, 10 V	6
	and 50V) having $I_{fsd}=50~\mu A,R_m=1~k\Omega.$	6
c.	With the help of block diagram explain the working of a integrating type DVM.	10
	Unit - II	
3a.	Find the current through the galvanometer of an unbalanced wheat stone bridge Fig. 3 (a).	6
b.	Find the value of R_x in the Kelvin's bridge as in Fig. 3 (b) with $Ra/R_b=1000,R_1=5\Omega,$	4
	$R_1 = 0.5 R_2$.	4
c.	With the help of neat diagram explain the working of a Wein's bridge.	10
4 a.	A capacitance comparison bridge is used to measure a capacitance impedance at a frequency	
	of 2 kHz. Bridge constants at balance are $C_3=100~\mu F,~R_1=10~k\Omega,~R_2=50~k\Omega,$	6
	$R_3 = 100 \text{ k}\Omega$. Find the equivalent series circuit of the unknown impedance.	
b.	With neat diagram explain the working of a Maxwell's bridge. What are its limitations,	0
	advantages and applications?	8
c.	Explain how the effect of stray capacitances in eliminated using Wagner's earth connection.	6
	Unit - III	
5 a.	What are the parameters an electrical transducer must have? Explain.	6
h	List eight important advantages of resistance thermisters	8

P13EC36	Page No 2

c.	What are the advantages and limitations of thermister?	6
6 a.	What are the important points to be reimbursed while selecting a transducer? Explain.	8
b.	A resistance strain gauge with a gauge factor of 2 in cemented to a steel member, which is	
	subjected to a strain of $1x10^{-6}$. If the original resistance value of the gauge in 130 Ω .	4
	Calculate change in resistance.	
c.	List important desirable characteristics of resistance wire strain gauge.	8
	Unit - IV	
7 a.	Write an explanatory note on Piezo electric transducer.	8
b.	What are the advantages of using LEDs in electronic displays? Explain.	8
c.	What is a basic sine wave generator?	4
8 a.	List important features of LCDS.	6
b.	Explain the construction, characteristics and one application of phototransistor.	8
c.	With neat diagram explain the working of AF sine and square wane generator.	6
	Unit - V	
9 a.	Explain the working of delayed time base oscilloscope.	10
b.	Explain the working of a frequency selective wave analyzer.	10
10 a.	. Write explanatory notes on:	
	i) Bi stable storage CRT	10
	ii) Variable persistence storage CRT.	
b.	Explain Wien's bridge and Bridge T – Network method of harmonic distortion analyzer.	10

10

* * * * *