U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec. - 2015 Electric Circuit Theory

Time: 3 hrs Max. Marks: 100

Note: i) Answer **FIVE** full questions, selecting **ONE** full question from each **unit**.

ii) Justify any Assumptions made.

UNIT - I

1 a. Define the following:

i) Branch of a network

ii) Potential Source

5

iii) Current Source

iv) Network and circuit.

b. Explain with figures the four types of dependent sources.

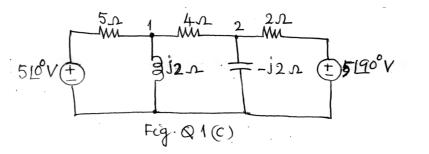
8

7

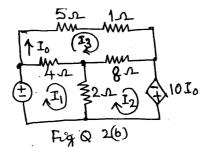
7

7

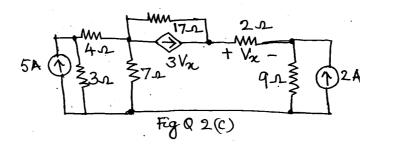
c. For the network shown in Fig .Q1(c), use nodal analysis to determine the node voltages.



- 2 a. For a network, develop the generalized mesh equation in the matrix form [Z][I] = [V] where [Z] = impedance matrix, [I] = mesh current matrix and [V] = source voltage matrix.
 - b. Using mesh analysis, find the current I_0 and the power dissipated in the 5 Ω resistor in the current of Fig. Q 2(b).



c. Calculate the current through 2 Ω resistor in the circuit of Fig. Q2(c) using source information.



6

UNIT - II

- 3 a. Define the following with an example each:
 - (i) Oriented graph
- (ii) Tre

- (iii) Incidence matrix
- 10

10

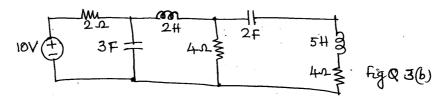
5

5

10

6

- (iv) Fundamental cut-set
- (v) fundamental tie-set
- b. For the network shown in Fig. Q 3(b) draw its dual. Write in the integrodifferential form,
 - (i) Mesh equations for the given network
- ii) Node equations for the dual.



- 4 a. Distinguish between the following terms as applied to network topology. Give suitable examples: (i) Planar graph and non-planar graph (ii) Links and twigs.
 - b. The reduced incidence matrix of a network is given below. Draw the oriented graph corresponding to it.

$$\begin{bmatrix} -1 & +1 & 0 & 0 & 0 & -1 \\ 0 & -1 & -1 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 & -1 & +1 \end{bmatrix}$$

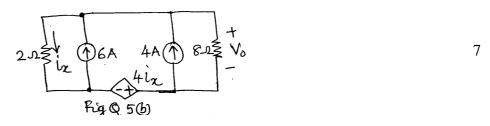
$$\begin{bmatrix} -1 & +1 & 0 & 0 & 0 & -1 \\ 0 & -1 & -1 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 & -1 & +1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & +1 & 0 & 0 & 0 & -1 \\ 0 & -1 & -1 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 & -1 & +1 \end{bmatrix}$$

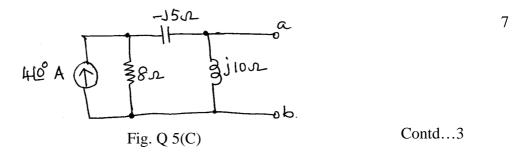
c. For the oriented graph shown in Fig. Q4 (c) write the complete incidence matrix. Also write the cut-set and tieset matrices considering branches 4, 5 and 6 as twigs.

UNIT - III

- 5 a. State and explain Reciprocity theorem.
 - b. Use superposition theorem to find V_0 in the circuit of Fig. Q 5(b).



c. Find the Thevenin equivalent circuit at terminals a-b in the circuit shown in Fig. Q5(c). What is the impedance Z_L to be connected across a-b so that maximum power is delivered to Z_L ? What is that maximum power?



- 6. a. For a series resonant circuit show that $\omega_0 = \sqrt{\omega_1 \omega_2}$ where $\omega_0 = \text{resonant frequency and } \omega_1$, $\omega_2 = \text{half power frequencies}$.
- 6

7

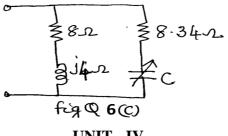
7

8

4

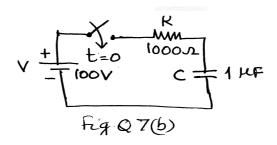
8

- b. A coil under test is connected in series with a variable capacitor C and a sine wave generator giving a 10 V rms output at a frequency of 1k rad/s. By adjusting C, the current is found to be maximum when $C = 10 \ \mu F$. Further the current falls down to 0.707 times the maximum value when $C = 12.5 \ \mu F$;
 - i) Find the inductance and resistance of the coil
- ii) Find the Q of the coil at resonance
- iii) What is the maximum current in the circuit?
- c. In the network shown in Fig. Q6(c), find the values of C for which the circuit resonates at w = 5000 rads/s.



UNIT - IV

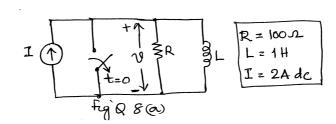
- 7 a. Write the equivalent form of the elements in terms of,
 - (i) The initial conditions of the elements
- (ii) the final conditions of the elements.
- b. In the network shown in Fig. 7(b) the switch is closed at t = 0 with the capacitor uncharged find the values of i and $\frac{di}{dt}$ at $t = 0 + \cdot$



 State convolution theorem as applied to Laplace transforms. Use convolution theorem to find the Laplace inverse of the function,

$$F(s) = \frac{s}{(s+1)(s+2)}$$

8 a. Determine v, $\frac{dv}{dt}$ and $\frac{d^2v}{dt^2}$ at $t = 0^+$ when the switch k is opened at t = 0 in the circuit of Fig. Q 8(a).



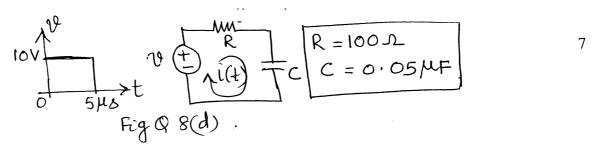
7

P08EC35 Page No... 4

b. What are the advantages of Laplace transform method over classical method for solving differential equation.

c. Show that
$$L\left\{\frac{df(t)}{dt}\right\} = sf(s) - f(0)$$
 where $F(s) = L\left\{f(t)\right\}$ and $f(0) = L\inf_{t\to 0}(t)$.

d. A pulse of 10 V magnitude and 5 μ s duration is applied to the RC circuit as shown in Q 8(d). Find the current i(t) using Laplace transform method.



3

10

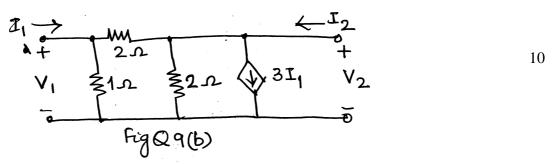
10

4

6

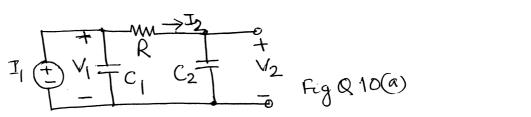
UNIT - V

- 9 a. What are poles and zeros of a network functions? List the restrictions on pole and zero locations for transfer functions.
 - b. Determine the y-parameters for the two-port network shown in Fig. Q 9(b) and draw the y-parameter equivalent circuit.



10a. For the network shown in Fig. 10(a) compute $\alpha_{12}(s) = \frac{I_2(s)}{I_1(s)}$ and $Z_{12}(s) = \frac{V_2(s)}{I_1(s)}$. Also locate

the poles and zeroes of $\alpha_{12}(s)$ and $Z_{12}(s)$ on the s-plane Assume $R = 1 \Omega$, $C_1 = 1 F$ and $C_2 = 2 F$.



- b. Explain the symmetry and reciprocity properties of two port networks.
- e. Show that the overall transmission parameter matrix for the cascaded connection of two two-port networks is the matrix product of the transmission parameter matrices of the individual two-port networks in the cascade.

* * * *