U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec. - 2015 Digital Circuit Design

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Assume suitably the missing data if any.

	UNIT - I							
1 a.	a. For a family of logic components, V_{IL} is 0.6 V and V_{IH} is 1.2 V. What voltages are required							
	for V_{OL} and V_{OH} to provide a noise margin of 0.2 V?							
b.	b. Explain the structure and operation of n-channel depletion type MOSFET.							
c.	c. Draw the circuit diagram of two-input ECL Nor gate and briefly explain its operation.							
	Mention the advantages and disadvantages of current mode logic.							
2 a.	2 a. Draw the circuit (Schematic) diagram of two-input CMOS AND gate and explain its							
	operation.							
b.	Draw the circuit diagram of NMOS NAND gate and PMOS NOR gate with truth tables.	10						
	UNIT - II							
3 a.	Simplify the following Boolean expressions using K-map Method,	10						
	$f(v, w, x, y, z) = \Sigma m (0, 1, 2, 3, 6, 7, 11, 15, 16, 17, 19, 23, 27, 31)$							
b.	b. Simplify the following Boolean expressions using K-map,							
	(i) $f(w, x, y, z) = \pi(1,2,3,4,9,10) + d(0,14,15)$							
	(ii) $f(w, x, y, z) = \sum m(0,1,2,4,5,9,12)$							
4 a.	4 a. Simplify the following Boolean function using QMC method,							
	$f(a, b, c, d) = \Sigma m(0, 1, 2, 8, 10, 11, 14, 15)$							
b.	b. A comparator compares two numbers A and B of two bit each. Obtain the expression for							
	A>B using MEV technique, considering LSB of B as the MEV.							
UNIT - III								
5 a.	Construct a 5-to-32 line decoder with four 3-to-8 decoder/de-multiplexer and a 2-to-4 line	10						
	decoder/de-multiplexer Y. Use block diagram construction.							
b.	b. Design and implement a combinational logic circuit for Excess-3 to BCD code conversion.							
6. a.	6. a. Implement the following Boolean function,							
	$f(w, x, y, z) = \sum m(4,5,7,8,10,12,15)$ Using 4:1 line multiplier and external gates if, y and z	8						

are connected to select lines S_1 and S_0 respectively.

b. Construct 32:1, multiplexer using 16:1 multiplexer and 2:1MUX 6 c. Develop the condensed truth table for 4-to-2 line encoder with a valid output where the highest priority is given to the least input with lowest index and obtain the minimal 6 expression for the outputs. **UNIT - IV** 7 a. Explain the gated JK latch with truth table and explain one of the applications of clocked 10 R S flip-flop. b. Give the logic diagram, truth table and explain the operation of Master-slave RS flip-flop 10 and also derive an expression for characteristic equation. 8 a. Draw the logic diagram of Negative Edge triggered D-flip-flop, write its truth table and 10 explain its operation. b. Explain with timing diagram, the concept of set-up time; hold time and propagation delay 10 with respect to negative edge triggered D-flip-flop. UNIT - V 9 a. Realize a 4-bit universal shift register and explain PISO, PIPO, SISO and SIPO. 10 b. Design and implement Mod-16 synchronous counter edge triggered JK flip-flop and draw 10 the wave form. 10a. Design and realize a decode counter (Asynchronous) using edge triggered T-flip-flop and 8 draw the waveform. b. Explain the serial binary adder as a Moore network. Obtain the state diagram also. 12

Page No... 2

P13EC33

* * * *