P08	EC34 Page No 1		
And and and	U.S.N		
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Electronics and Communication Engineering Semester End Examination; Dec - 2016/Jan - 2017 Engineering Electromagnetics			
	te: 3 hrs Max. Marks: 100 : i) Answer FIVE full questions, selecting ONE full question from each unit.		
	ii) Assume suitable missing data, if any.		
	UNIT - I		
1 a.	State and explain Coloumb's law in vector form. Two point charges $Q_1 = 50 \ \mu C$ and		
	$Q_2 = 10 \ \mu C$ are located at (-1, 1, -3) m and (3, 1, 0) m respectively. Find force on Q_1 .		
b.	Derive an equation for Electric filed intensity at a point 'P' due to a finite length 'L' of line		
	of charge density ρ_l and extend the result to obtain electric field intensity of infinite line of		
	charge.		
с. 2 а.	State and prove Gauss divergence theorem. Derive the term Electric field intensity. A uniform line charge $\alpha = 25 \ nC/m$ line on the line		
2 a.	Derive the term Electric field intensity. A uniform line charge $\rho_l = 25 \ nC/m$ lies on the line $x = -3 \ m$, $Z = 4 \ m$, in free space. Find the electric field intensity at a point (2, 15, 3) m .		
b.	x = -5 m, $z = -7 m$, in free space. This the electric flux density. Evaluate the amount of electric flux density.		
	that passes through the portion bounding by $-1 \le y \le 2$ and $0 \le z \le 4$ in the $x = 3$ plane, if		
	$\vec{D} = 2xy\hat{a}_x + 3yz\hat{a}_y + 4zx\hat{a}_z C / m^2.$		
	UNIT - II		
3 a.	Calculate the potential difference V_{AB} for a line charge with $\rho_l = 5 nC/m$ on the Z-axis,		
	where, $A(2m, \frac{\pi}{2}, 0)$ and $B(4m, \pi, 5m)$.		
b.	Explain the conservative nature of static electric field and show that $E = -\nabla V$.		
	-		
c.	If $V = x - y + xy + 2z$ volt. Find \vec{E} at (1, 2, 3) and energy stored in a cube of side 2 m		
4	centered at the origin.		
4 a.	State and prove Uniqueness theorem.		
b.	At the boundary between two different dielectrics, derive the relation between tangential and normal field component.		
c.	Two parallel conducting planes are separated by distance 5 mm at $z = 0$ and $z = 5$ mm.		
	If, $V = 0$ at $z = 0$ and $V = 100$ V at $z = 5$ mm. Find the charge densities on the plates.		
	UNIT - III		
5 a.	Find the magnetic flux density at the centre of a square wire loop 2 m on a side carrying a		

current of 3 A.

P08EC34 Page No 2		
b.	Explain the concept of scalar and magnetic vector potential.	7
с.	State and prove Stoke's theorem.	5
6 a.	Derive the equation of force between differential current elements.	7
b.	Obtain magnetic torque and magnetic dipole moment for a rectangular planar coil carrying	8
	current ' I ' placed in XY plane and parallel to the magnetic field.	0
с.	A linear conductor carries a current of 100 A in the +ve X-direction. If flux is everywhere	
	is uniform with magnitude of $B = 2.5 \text{ Wb/m}^2$ and has direction parallel to the XY plane at	5
	an angle of 45° with respect to X-axis. Find the magnitude and direction of force on 2 m	5
	length of conductor.	
	UNIT - IV	
7 a.	Derive the boundary conditions at the interface between two media of different	6
	permeabilities.	0
b.	Derive the equation for self inductance of,	8
	i) Two wire transmission line ii) Co-axial cable.	0
с.	The magnetic field traverse from medium 1 to medium 2. If magnetic field intensity,	
	$\vec{H} = -30\hat{a}_x + 50\hat{a}_y + 70\hat{a}_z$ in medium 1, $\mu_{r1} = 2.5$, $\mu_{r2} = 4$, boundary is at $Z = 0$. Find	6
	magnetic field intensity in medium 2.	
8 a.	Explain the concept of conduction current density and displacement current density.	7
b.	List the Maxwell's equation both in integral form and differential form.	8
с.	Write note on retarded potential.	5
	UNIT - V	
9 a.	State and prove Poynting vector theorem.	7
b.	A uniform plane wave with frequency 10 GHz is propagating in poleythelene for which	
	$\mu = \mu_0, \varepsilon_r = 2.3 and \sigma = 2.56 \times 10^{-4} \text{ U/} m.$	
		7
	Calculate the,	
	i) Attenuation constant ii) Phase constant.	
с.	Derive the equation for the wave in free space with electric field along X-direction and	6
	magnetic field along Y-direction.	
10 a.	Explain the following types of wave polarization,	8
	i) Linear ii) Elliptical iii) Circular.	~
b.	Explain the reflection of uniform plane wave at normal incidence and show that $1 + \Gamma = \tau$	8
с.	Write a note on standing waves.	4