U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. – Electronics and Communication Engineering Semester End Examination; Dec - 2016/Jan - 2017 Digital Electronic Circuits

Time: 3 hrs Max. Marks: 100

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

UNIT - I

- 1 a. Explain with a neat circuit diagram, the working of two input basic (NAND) TTL gate.
- b. With the help of circuit diagram, explain the working of two input NMOS NAND gate and two input PMOS NOR gate.
- c. Define the following terms:
 - i) Power dissipation ii) Propagation delay.
- 2 a. Explain with the circuit diagram, the operation of ECL NOR gate.
 - b. Explain the operation of n-channel depletion type MOSFET with neat diagram and V-I characteristics.

UNIT-II

3 a. Obtain the complement of the following function:

$$f(w, x, y, z) = \overline{w}x\overline{z} + w(x + \overline{y}z).$$

b. Obtain the minimized Boolean Expression for the following,

i)
$$f(w, x, y, z) = \sum m(0,1,2,3,4,9,13) + \sum \phi(5,10,11,14)$$

ii) $f(w, x, y, z) = \pi m(0, 3, 4, 11, 13) + \pi \phi(2, 6, 8, 9, 10)$.

- c. Design a three input and one output combinational logic circuit that has logic '1' output when the majority of inputs are at logic '1'.
- 4 a. Simplify using QM minimization technique,

$$f(v, w, x, y, z) = \sum m(4,5,9,11,12,14,15,27,30) + \phi(1,17,25,26,31).$$

b. Simplify the following function using MEV technique,

$$f(a,b,c,d) = \sum M(2,3,4,5,13,15) + \sum \phi(8,9,10,11).$$

Use 2 variable VEM and 3 variable VEM.

UNIT - III

5 a. Realize the following Boolean expression using 3 to 8 line decoder and OR gates,

$$f_1(x, y, z) = \sum m(1, 2, 4, 5)$$

$$f_2(x, y, z) = \sum m(1, 5, 7)$$

8

7

5

10

5

10

5

12

8

P13	Page No 2			
b.	Design a 4 to 2 line priority encoder.	8		
c.	Realize: $f(w, x, y, z) = \sum m(0,1,5,6,7,9,12,15)$ using multiplexer.	6		
6 a.	Design and implement the following functions using PLA,			
	$f_1 = \sum m(0,1,3,4);$ $f_2 = \sum m(1,2,3,4,5).$	10		
b.	Design a 2-bit magnitude comparator.	10		
	UNIT - IV			
7 a.	Explain Gated SR Latch with diagram.	8		
b.	Explain the function and working of Gated D latch.	8		
c.	. Explain how SR latch can be used as switch?			
8 a.	Explain the working of master-slave JK flip-flop.			
b.	Explain the working of master-slave SR flip-flop.	10		
	UNIT - V			
9 a.	Explain the working of a universal shift register with a neat circuit diagram.	10		
b.	Design a synchronous Mod-6 up counter using clocked JK flip-flop for the count sequence			
	$40 \rightarrow 2 \rightarrow 3 \rightarrow 6 \rightarrow 5 \rightarrow 1$ and repeat.	10		
10 a.	Explain with a neat diagram the architecture of 86 processor.	10		
b.	Explain the structure of PSW register of 86.	6		
C	What do you mean by memory segmentation?	4		

* * *