

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

3 a.

Define the:

- UNIT I
- 1 a. Draw the Physical structure of the Enhancement type NMOS transistor. Mention the different parts.
- b. Design the circuit of Fig. 1b. The transistor operation at $I_D = 0.4$ mA, $V_D = 0.5$ V, $V_{th} = 0.7$ V, $L = 1 \ \mu m$ and $W = 32 \ \mu m$ and $\mu_n C_{OX} = 100 \ \mu A/V^2$, Assume $\lambda = 0$.

$$I_{D} \downarrow \stackrel{V}{=} \stackrel{V_{D0} = +2.5 V}{R_{D}} V_{D} \qquad 8$$

$$I_{D} \downarrow \stackrel{V}{=} \stackrel{V_{D0}}{R_{S}} \qquad f_{18}(1b)$$

$$I_{D} \downarrow \stackrel{V}{=} \stackrel{R_{S}}{R_{S}} \qquad V_{SS} = -2.5 V$$

- 6 i) CMRR ii) Slew rate iii) PSRR. b. Explain the working of differential input/output amplifier. 10 Develop the equation for Z_{in} for high input impedance capacitor coupled Voltage Follower. 4 с. Explain with circuit diagram and derive an equation for the output voltage of a two input 4 a. 12 Inverting and non-inverting summing amplifier. b. Design capacitor coupled investing amplifier, a signal frequency range of 50 Hz to 1 kHz is applied. If the R_L is 250 Ω , calculate the required capacitor values and sketch the circuit with 8 values. Assume $R_1 = 1 \text{ k}\Omega$ and $R_2 = 47 \text{ k}\Omega$. **UNIT - III**
- 5 a. Define gain bandwidth product. Determine the upper cutoff frequency for a voltage follower with $A_{OL} = 40$ DB and gain bandwidth product is 1 MHz.

4

P15EC32 Page No		
b.	Mention the any five precautions for Op-Amp circuit stability.	5
c.	Explain with neat sketch the Integrating circuit. Discuss its DC operation.	10
6 a.	Explain miller effect. Derive the equation relating the input capacitance of an inverting amplifier.	8
b.	Discuss the effects of slow rate of an Op-Amp.	6
c.	Explain with neat sketch the current amplifier and derive an equation for current gain.	6
UNIT - IV		
7 a.	With circuit diagram and waveform, explain the working of a saturating precision full wave rectifier.	10
b.	Explain with neat diagram of Astable multi vibrator using Op-Amp.	10
8 a.	Sketch the circuit of a voltage type peak detector. Explain the circuit operation.	10
b.	Draw an Op-Amp sample and hold circuit. Sketch the signal, control and output voltage	10
	waveforms. Explain the circuit operation.	10
UNIT - V		
9 a.	Draw circuit and output waveform of a triangular wave generator. Explain the circuit operation.	10
b.	using a BIFET Op-Amp with a supply of ± 12 V, design a Wein Bridge oscillator to have an output frequency of 15 kHz, Choose C = C ₁ = C ₂ = 0.01 µf.	6
с.	Explain the operation of DC voltage regulator with sketch.	4
10 a.	What is Barkhansen Criterion? Explain how oscillation starts in an oscillator.	6
b.	Sketch the circuit of 2 nd order Low pass Active filter and explain the circuit operation.	10
c.	Draw the basic circuit of a 723 IC DC voltage Regulator.	4

* * *