\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Third Semester, B.E. - Electronics and Communication Engineering Make-up Examination; Jan / Feb - 2017

Network Analysis and Synthesis
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit.
UNIT - I
1 a. State and prove maximum power transfer theorem as applied to DC circuits.
b. Use nodal analysis in the circuit of Fig. 1 to found the current through 30Ω resistor.

c. Find the voltage across the 4Ω resistor using mesh analysis in the network of Fig. 2.

b. Use repeated application of source transformation to find V_{0} in the circuit of Fig. 3.

c. By using star-delta transformation technique, find the equivalent resistance $R_{a b}$ and current I in the circuit shown in Fig. 4.

UNIT - II

3 a. For a series resonant circuit, obtain the expressions for ω_{1} and ω_{2} in terms of components values R, L and C also show that $\omega_{0}=\sqrt{\omega_{1} \omega_{2}}$.
b. A series RLC circuit has $\mathrm{R}=10 \Omega, \mathrm{~L}=0.01 \mathrm{H}$ and $\mathrm{C}=100 \mu \mathrm{~F}$, compute the resonant frequency, bandwidth, quality factor and half-power frequencies.
c. Define resonance in electric circuits. Compute the numerical values of $\omega_{0}, \alpha, \omega_{\mathrm{d}}$ and R for a parallel resonant circuit having $\mathrm{L}=2.5 \mathrm{mH}, \mathrm{Q}_{0}=5$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$.

4 a. What do you mean by initial conditions in electric networks? Show mathematically that the voltage across a capacitor cannot change instantaneously.
b. Determine the transient response of a series RL circuit under DC excitation.
c. In the network shown in Fig. 5 the switch is changed from position 1 to position 2 at $t=0$, steady state having reached before switching. Find the values of $i, d i / d t$ and $d^{2} i / d t^{2}$ at $t=0^{+}$.

UNIT - III

5 a. Find the inverse Laplace transform of $\quad V_{S}=\frac{2}{s^{3}+12 s^{2}+36 s}$.
b. State and prove convolution theorem as applied to Laplace transform.
c. For the network shown in Fig. 7 find $V_{0}(t)$ for $t>0$ using mesh analysis in the s-domain circuit.

6 a. Determine $V(t)$ for $t>0$ in the series RC circuit shown in Fig. 6.

b. Find the Laplace transform of the waveform shown below.

UNIT - IV

7 a. Find the input impedance of the network shown in Fig. 8

b. Find the y-parameters for the network shown in Fig. 9.

c. Define h-parameters for a two-port network. Explain them in terms of Z-parameters.

8 a. Define the following with examples :
i) Planar graph
ii) Sub-graph
iii) Tree.
b. For the circuit shown in Fig. 10, draw the oriented graph and write,
i) The incidence matrix
ii) Tie set matrix iii) f-cutset matrix.

c. Draw the dual of the network shown in Fig. 11.

fog. 11 Q 8(C)
UNIT - V
9 a. List the properties of Hurwitz polynomials.
b. Test whether $f_{(s)}=\frac{s^{2}+6 s+5}{s^{2}+9 s+14}$ is a positive real function.
c. Test whether the polynomial, $P(s)=s^{4}+s^{3}+3 s^{2}+2 s+12$ is Hurwitz.

10 a. Realize the Caver forms of the LC-impedance function, $Z_{(s)}=\frac{10 s^{4}+12 s^{2}+1}{2 s^{2}+2 s}$.
b. List the properties of positive real functions.
c. Realize Foster I form realization of the RC-impedance function :

$$
Z_{(s)}=\frac{(s+1)(s+3)}{s(s+2)(s+4)}
$$

