\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Third Semester, B.E. - Electronics and Communication Engineering
Semester End Examination; Dec - 2016/Jan - 2017
Network Analysis and Synthesis
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I
1 a. Determine the value of the voltage labeled V_{1} shown in Figure-1a.

Figure-1a
b. For the circuit of Figure-1b, use nodal analysis to determine V_{1} and V_{2}.

Figure-1b
c. Employ mesh analysis to determine the current flowing in the circuit of Figure-1c through the 2Ω resistor.

Figure-1c
2 a . Using source transformation, determine the power dissipated by the $5.8 \mathrm{k} \Omega$ resistor in Figure-2a.

b. Find the frequency domain Thevenin equivalent of the network shown in Figure-2b. Show the result as V_{th} in series with Z_{th}.

Figure-2b
c. Find the average power absorbed by the 10Ω resistor shown in Figure-2c.

Figure-2c

UNIT - II

3 a. Define quality factor and prove that for a parallel RLC circuit quality factor $Q_{0}=\omega_{0} R C$.
b. A parallel resonant circuit has $\omega_{0}=1000 \mathrm{rad} / \mathrm{s}, Q_{0}=80$, and $C=0.2 \mu F$. Find R and L.
c. A series resonant network consists of a 50Ω resistor, a 4 mH inductor, and a $0.1 \mu \mathrm{~F}$ capacitor. Calculate values for, (i) $\omega_{0} \quad$ (ii) $f_{0} \quad$ (iii) Q_{0} and (iv) Bandwidth B.

4 a . In the network shown in Figure-4a, the switch is changed from the position 1 to the position 2 at $t=0$. Steady state condition having reached before switching. Find the values of $i, d i / d t$ and $d^{2} i / d t^{2}$ at $t=0^{+}$.

Figure-4a
b. For the network shown in Figure-4b, the switch is open for a long time and closes at $t=0$. Determine $V_{C}(t)$.

Figure-4b
UNIT - III
5 a. State and prove :
(i) Initial value theorem
(ii) Final value theorem as applied to Laplace transform.
b. Find the Laplace transform of the following :
i) $3 u(t-3)-3$
ii) $3 u(3-t)$.
c. Referring to the RL circuit of Figure-5c, (i) Write a differential equation for the inductor current $i_{L}(t)$, (ii) Find $I_{L}(s)$ the Laplace transform $i_{L}(t)$, (iii) Solve for $i_{L}(t)$ by taking the inverse Laplace transform of $\mathrm{I}_{\mathrm{L}}(\mathrm{s})$.
 convolution of the individual Laplace transforms.
c. State all poles and zeros of each of the following s-domain functions :
i) $\frac{3 s^{2}}{s\left(s^{2}+4\right)(s-1)}$
ii) $\frac{s^{2}+2 s-1}{s^{2}\left(4 s^{2}+2 s+1\right)\left(s^{2}-1\right)}$.

UNIT - IV

7 a. Find y_{11} and y_{12} for the two-port shown in Figure-7a.

b. Convert the Δ network of Figure-7b to a Y connected network.

c. Find t_{A} for the single 2Ω resistor of Figure-7c. Show that t for a single 10Ω resistor can be obtained by $\left(t_{\mathrm{A}}\right)^{5}$.

8 a. Compare the following terms as applied to network topology with suitable examples :
(i) Planar graph and non planar graph
(ii) Links and twigs.
b. For the circuit shown in Figure-8b,
(i) Draw its graph
(ii) Draw its tree
(iii) Write the fundamental cutset matrix.

Figure-8b

$$
Q=\left[\begin{array}{ccccc}
-1 & 1 & 0 & 0 & -1 \tag{7}\\
0 & 0 & 1 & 0 & -1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

UNIT - V

9 a. Test whether the following polynomial is Hurwitz,

$$
P(s)=s^{4}+s^{3}+5 s^{2}+3 s+4 .
$$

b. Test whether the function given is a positive real function $f_{(s)}=\frac{s^{2}+6 s+5}{s^{2}+9 s+14}$.
c. Justify which of the function is RL or RC impedance functions :
i) $z_{(s)}=\frac{4(s+1)(s+3)}{s(s+2)}$
ii) $z_{(s)}=\frac{s(s+4)(s+8)}{(s+1)(s+6)}$.

10 a. Realize Cauer-II form of the function :

$$
\begin{equation*}
z_{L C(S)}=\frac{s\left(s^{4}+3 s^{2}+1\right)}{3 s^{4}+4 s^{2}+1} . \tag{7}
\end{equation*}
$$

b. Realize Foster-I form of the function :

$$
\begin{equation*}
z_{(s)}=\frac{(s+1)(s+3)}{s(s+2)} \tag{7}
\end{equation*}
$$

c. List any five properties of LC driving point immittance function.

