P13EC44 Page No 1	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum)	
Fourth Semester, B.E Electronics and Communication Engineering	
Semester End Examination; June/July - 2015 Digital Signal Processing	
Time: 3 hrs Max. Marks: 100	
<i>Note: i)</i> Answer FIVE full questions, selecting ONE full question from each Unit.ii) Assume suitable missing data if any.	
UNIT - I	
1. a. State and prove the relationship between Z-transform and DFT.	6
b. The first five DFT points of real and even sequence $x(n)$ of length eight are given as	6
$X(k) = \{5, 1, 0, 2, 3, \dots\}$ Determine remaining three points.	
c. Compute 4-point DFT of the sequence $x(n) = u(n) - u(n-2)$ sketch the magnitude plot of DFT.	8
2 a. An FIR digital fitter has an unit impulse response $h(n) = \{2, 2, 1\}$. Determine the output sequence	
$y(n)$ in response to an input sequence of $x(n) = \{3, 0, -2, 1, 0, -2, -1, 0\}$ Use overlap save fast	10
convolution technique.	
b. Determine IDFT of a 4-point sequence $X(k) = \{4, -j2, 0, j2\}$ using DFT.	4
c. If $y(n) = \frac{x(n) + x(-n)}{2}$ find $Y(k)$ if $X(k) = \{0.5, 2+j, 3+j2, j, 3, -j, 3-j2, 2-j\}$	6
UNIT - II	
3 a. Classify FFT Algorithms and discuss the advantages of FFT Algorithm.	6
b. Derive DIT-FFT flow graph for N = 4 and hence find the DFT of $x(n) = \{1, 2, 3, 4\}$.	10
c. Explain bit reversal property used in FFT algorithm for $N = 16$.	4

- 4. a. Find IDFT of $X(k) = \{36, -4 + j9.7, -4 + j4, -4 + j1.7, -4, -4 j1.7, -4 j4, -4 j9.7\}$ using DIF-FFT 10 algorithm. Show clearly all the intermediate results.
 - b. Determine the 8 point DFT of sequence $x(n) = \{1, 1, 1, 1, 0, 0, 0, 0\}$ using DIT-FFT algorithm. 10

UNIT - III

- 5. a. Explain the frequency sampling method of designing FIR filters and draw the corresponding block diagram.
 - b. Find an expression for the impulse response h(n) of a linear phase low pass FIR filter using Kaiser window to satisfy the following magnitude response specifications for the equivalent analog filter, stop band attenuation = 40 dB, pass band ripple = 0.01dB, transition width = 1000 π rad/s. Ideal cut off frequency =2400 rad/s, sampling frequency =10 kHz.

8

12

P13EC44

Page No... 2

8

8

6. a. Explain the design procedure of FIR filters, using windows concept.

b. A low pass filter is to be designed with the following desired frequency response :

$$H_{d}\left(e^{jw}\right) = \begin{cases} e^{-j2w}, & -\pi/4 \le w \le \pi/4 \\ 0, & \pi/4 < |w| \le \pi \end{cases}$$
12

Determine the filter coefficients $h_d(n)$ of the window function is defined as:

$$w(n) = \begin{cases} 1, & 0 \le n \le 4\\ 0, & otherwise \end{cases}$$

UNIT - IV

7. a. Explain	Bilinear Transformation method. Derive an expression showing mapping from S- plane	o
to Z-plar	ne. Show that there is no aliasing effect in Bi-linear transformation.	8
b. Design a	Chebyshev filter to meet the following specifications:	
(i)	Pass band ripple $\leq 2 \text{ dB}$	
(ii)	Stop band attenuation $\geq 20 \text{ dB}$	12
(iii)	Pass band edge: 1 rad/s	
(iv)	Stop band edge : 1.3 rad/s	
8. a. Distingu	ish between IIR and FIR filters.	4
b. Derive a	n expression for order of a low pass butterworth filter.	6
c. Design a	nd realize a digital low pass filter using the bilinear transformation method to satisfy the	
followin	g characteristics. Take $T = 2$ sec.	
(i)	Pass band ripple $\leq 1.25 \text{ dB}$ ii) Pass band edge = 200 Hz	10

- (ii) Stop band attenuation = 15 dB iv) Stop band edge = 400 Hz
- (iii) Sampling frequency = 2 kHz

UNIT -V

9. a. Obtain direct form-I and Lattice structure for the system described by the difference equation

$$y(n) = x(n) + \frac{2}{5}x(n-1) + \frac{3}{4}x(n-2) + \frac{1}{3}x(n-3)$$
10

b. Obtain the direct form II and cascade realization of

$$H(z) = \frac{(z-1)(z^2+5z+6)(z-3)}{(z^2+6z+5)(z^2-6z+8)}$$
10

10 a. A FIR filter is given by y(n) = 0.75y(n-1) - 0.125y(n-2) + 6x(n) + 7x(n-1) + x(n-2) draw the Direct Form –I and Direct Form –II structure.

b. Realize the system with difference equation:

$$y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)$$
 in cascade and parallel 12 form.