P13	BEC46					Page	No	1								
	U.S.N															
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fourth Semester, B.E Electronics and Communication Engineering Semester End Examination; June/July - 2015 Electromagnetic and Antennas Time: 3 hrs Max. Marks: 100																
Note : Answer FIVE full questions, selecting ONE full question from each Unit.																
	UNIT - I															
1. a. S	State Coulomb's law. Also write its vector form.									6						
b. An electron beam with volume charge density $\rho_{\nu} = -5 \times 10^{-6} e^{-10^{5\rho_z}} C/m^3$ is oriented along																
2	Z-direction. Calculate the total charge enclosed by the beam if 0.02 m $< Z < 0.04$ m,															
($0 < \phi < 2\pi$ and $0 < \rho < 0.01m$															
c. Develop an equation for Electric field intensity due to a sheet of charge along YZ plane at a										6						
point on positive X axis.																
2 a. I	Explain the following terms :								1	10						
(i) Electric Flux density(ii) Divergence								-							
	A 50 cm long co-axial cable has an inner radius 1							-		6						
	between the conductors is filled with air dielectric. Total charge on inner conductor is 30 nC															
	calculate; ρ_s (inner) D_ρ and E_ρ			c	ь и	71 . •	•.									
C.]	If $D = e^{-x} \sin y \hat{a}_x - e^{-x} \cos y \hat{a}_y + 2z \hat{a}_z C/m^2$. Calcula	ate dive	rgence	e of	D. W	hat is	its i	unit?		4						
	UNIT – II															
	Non uniform field E is given by $E = y \hat{a}_x + x \hat{a}_y + 2 \hat{a}_z$									8						
C	carrying 2 C from B (1, 0, 1) to A (0.8, 0.6, 1) along t	the sho	rter ar	arc of the circle $x^2 + y^2 = 1$,												
	z = 1.															
	* *	e relationship between E and V. What is gradient of V in the three co-ordinate														
	systems? Define a dinale? Develop the equation for V at point I		d at D	0.1	d D	racpa	ativ	alv u	with							
	Define a dipole? Develop the equation for V at point Freespect to the charges.	Tocale	u ai n	a ai	IU \mathbf{K}_2	respec	21176	ery w		4						
	1 0	sson's and Laplace's equation from Guass Law. Write Laplacian of V in 3														
	dinate systems.															
	State and prove uniqueness theorem.									6						
c. I	Explain the concept of Scalar and Vector magnetic Pote	ential.								6						

UNIT – III

5. a.	A current element 4cm long is along y axis with a current of 10 mA flowing in y direction.	4							
	Calculate the force on the current element due to magnetic field $H = [5 \hat{a}_x / \mu] A / m$								
b.	Explain the nature of ferromagnetic, anti ferromagnetic, ferromagnetic and super	8							
	paramagnetic materials.	0							
c.	c. If $\mu = \mu_1 = 4 \ \mu H/m$ region 1 of where $z > 0$, while $\mu_2 = 7 \ \mu H/m$ wherever $z < 0$ and $k = 80 \ \hat{a}x \ A/m$ on the surface $z = 0$. If $B_1 = 2\hat{a}_x - 3\hat{a}_y + \hat{a}_z \ mT$ in region 1, calculate B_2 .								
6. a.	a. Starting from Faraday's Law, show that for a time varying fields $\nabla \times E = -\frac{\partial B}{\partial t}$.								
b.	b. Assuming that time changing magnetic field produces an electric field, develop Ampere's								
	circuital Law in point form.								
c.	Write Maxwell's with equation in integral form for time varying fields.	4							
	UNIT - IV								
7. a.	Explain the terms poynting vector, skin effect and wave polarization with respect to uniform								
	plane waves.	10							
b.	. Define the terms: (i) SWR (ii) Reflection coefficient. What is the relationship between them?								
c.	Explain wave propagation in general dielectrics	5							
8. a.	a. Define terms with respect to antenna:								
	(i) antenna patterns (ii) beam solid angle (iii) Directivity	9							
b.	Explain: (i) Antenna field zones (ii) shape- Impedance consideration	6							
c.	Develop the relationship between directivity and effective aperture of an antenna in terms of λ .	5							
	UNIT - V								
9. a.	With respect to radiation explain the terms:								
	(i) Electrostatic field	8							
	(ii) Induction field	0							
	(iii) Hertzian dipole								
b.	Calculate the distance beyond which the earth's curvature in to be accounted at:	6							
	(i) 100 kHz (ii) 1 MHz (iii) 10 MHz What is the inference?	0							
c.	Briefly explain super refraction.	6							
10 a	Explain tropospheric propagation in the detail.	8							
b.	Explain the terms:	6							
	(i) Critical frequency (ii) MUF (iii) Virtual height	0							
c.	Calculate the skip distance for flat earth with MUF of 10 MHz if the wave is reflected from a	6							
	height of 300 km where maximum value of n is 0.9.	Ŭ							