P13EC42 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fourth Semester, B.E. - Electronics and Communication Engineering **Semester End Examination; June - 2016 Analog Communication Theory**

Time: 3 hrs Max. Marks: 100

Note: i) Answer *FIVE* full questions, selecting *ONE* full question from each unit.

ii) Assume suitable missing data if any.

UNIT - I 1. a. Illustrate the time and frequency domain character of standard amplitude modulation produced by a single tone frequency component, also obtain the equation for carrier power, 6 upper side frequency power, lower side frequency power, if average power delivered to 1 Ω resistor. 6 b. Explain with the help of a neat sketch, how square law modulator is used to generate AM. c. An audio frequency signal $5\sin 2\pi (1000)t$, used to amplitude modulate a carrier of $100\sin 2\pi (10^6)t$. Assume modulation index as 0.4. Find; i) Side band frequencies 8 ii) Amplitude of each sideband iii) Bandwidth required iv) Total power delivered to a load of 100 Ω . 2 a. Consider a message signal $m(t) = 20\cos(2\pi t)$ V and the carrier wave $C(t) = 50\cos(100\pi t)$ V, i) Write an expression for the resulting AM wave for 75% modulation in time domain. 10 ii) Draw the spectrum of AM wave. iii) Sketch the resulting wave for 75% modulation. b. Define Hilbert transform and explain the properties of Hilbert transform. 6 c. A standard AM transmission, sinusoidally modulated to depth of 40%, produces sideband frequencies of 6.824 and 6.854 MHz. The amplitude of each side band frequency is 50 V 4 determine the amplitude and frequency of the carrier.

UNIT-II

- 3 a. Explain the generation of DSBSC waves using ring modulator with necessary mathematical equations.
 - b. Explain the operation of coherent detection of DSBSC modulating wave along with the costax 10 loop of obtaining synchronous receiving system.

10

P	13EC42 Page No 2					
4. a.	Compare the various parameters of SSB-SC wave with DSB-SC wave.	4				
b.	b. Explain the generation of an SSB wave using filtering method.					
c.	Write short note on QAM system.	6				
	UNIT - III					
5. a.	What is meant by VSB? Explain the scheme for generation and demodulation of VSB modulated wave.	10				
b.	With a neat block diagram explain the operation of FDM techniques, with example.	10				
6. a.	Obtain the expression for an FM and PM wave. Also write the waveforms.	10				
b.	A 93.2 MHz carries is frequency modulated by a 5 kHz sine wave, the resultant FM signal has a frequency deviation of 40 kHz,					
	i) Find the carrier swing of the FM signal.	10				
	ii) What are the highest and lowest frequencies attained by the frequency modulated signal?					
	iii) Calculate the modulation index for the wave.					
	UNIT - IV					
7. a.	Show that NBFM wave have infinite BW.	10				
b.	Explain with block diagram the generation of narrow band FM using DSB-SC modulation.	10				
8. a.	The equation for an FM wave is,					
	$S(t) = 10\sin\left[5.7 x 10^8 t + 5 \sin 12 x 10^3 t\right]$					
	Calculate:	10				
	i) Carrier frequency ii) Modulating frequency iii) Modulation index					
	iv) Frequency deviation v) Power dissipated in 100Ω					
b.	Explain the detection process of FM signals using balanced slope detector circuit with relevant diagrams.	10				
	UNIT - V					
9. a.	a. Derive the equation for Noise factor for cascade connection of two port networks.					
b.	b. Explain different types of noise which effect the communication system.					
10 a	The available o/p noise power from an amplifier is 100 nW the available power gain of the					
	amplifier is 50 dB and the equivalent noise bandwidth is 30 MHz. Calculate the noise figure.	5				
	Assume $K_T = 4x10^{-21} J$.					
b.	b. What do you mean by equivalent noise temperature?					
	Also derive the equation for equivalent noise temperature when amplifiers are connected in cascade.	10				