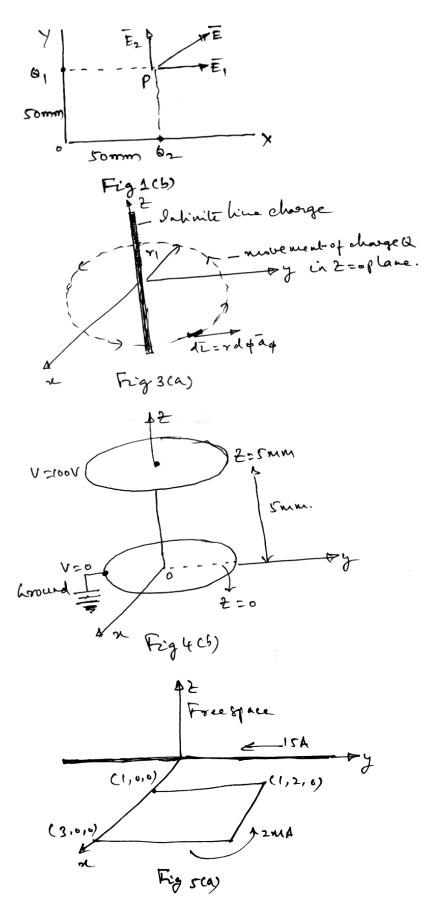
P13EC46 Page No 1		
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fourth Semester, B.E Electronics and Communication Engineering Semester End Examination; June - 2016 Electromagnetic and Antennas		
Time: 3 hrs Max. Marks: 1 Note: Answer any FIVE full questions, selecting ONE full question from each unit.	00	
UNIT - I		
1 a. Derive the equation for far field due to a line charge ρ_l along y-direction. Assume line charge is oriented along Z – direction.	rge	
b. Two changes $Q_1 = Q_2 = 10 \text{ pC}$ are located as in Fig. 1(b). Find E-field at point P.		
c. Find E-field at the origin, if the following change distributions are present in free space.		
i) Point charge 12 nC at p(2, 0, 6)		
ii) Uniform line charge density 3 nC/m at $x = 2$, $y = 3$		
iii) Uniform surface charge density of 0.2 nC/m^2 at $x = 2$		
2 a. State and explain Gauss' Law.		
b. A point charge of 6μ C is located at the origin, a uniform line charge density of 180 nC/m l along <i>x</i> -axis and uniform sheet of charge equal to 25 nC/m ² lies in the Z = 0 plane. Find; D		
(0, 0, 4).	' at	
c. In certain region of space $\overline{D} = 2xy\hat{a}_x + 3yz\hat{a}_y + 4zx\hat{a}_z$. Find the amount of electric flux t	hat	
passes through a portion bounded by $-1 \le y \le 2$ and $0 \le z \le 4$ in $x = 3$ plane using Gauss' la		
UNIT - II		
3 a. Consider Fig. 3(a) and show that the work done is zero if a point change Q is moving in circular path of radius r_1 , centered around the line charge.	n a	
b. Three charges 3 μ C, 4 μ C & 5 μ C are located at (0, 0, 0), (2, -1, 3) and (0, 4, -2) respective. Find the potential at (1, 0, 1) assuming zero potential at infinity.	ely.	
c. Find \overline{E} at the point (0, 1, 1) if		
(i) $V = E_0 e^{-x} \sin(\pi y/4)$ Cartesian co-ordinates.		
(ii) $V = E_o r \cos \theta$ spherical coordinates		
4. a. Determine whether or not the following potentials fields satisfy the Laplace's equation? (i) $V = r \cos \phi + z$ (ii) $V = r \cos \theta + \phi$		
b. For the two parallel discs arrangement shown in Fig 4(b) find charge densities on the discs.		
c. State and prove stokes theorem.		


P13EC46

UNIT - III

5. a.	Find the force on the square loop as in Fig 5(a) carrying 2 mA in the field of an infinite	6	
	filament along y-axis.	6	
b.	Define the following terms :	6	
	(i) Torque (ii) Permeability (iii) Self-inductance.	6	
c.	Explain the concept of magnetic boundary condition.	8	
6. a.	A conductor 1cm length is parallel to Z-axis & rotates at radius of 25 cm at 1200 rpm. Find		
	the induced voltage, if radial field is $\overline{B} = 0.5\hat{a}_r T$	6	
b.	An area of 0.65 m^2 in the plane $Z = 0$ encloses a filamentary conductor. Find the induced		
	voltage if $B = 0.05 \cos 10^3 t \left(\frac{\hat{a}_y + \hat{a}_z}{\sqrt{2}} \right)$ tesla.	6	
c.	Write Maxwell's equations for free space in point and integral form.	8	
UNIT - IV			
7. a.	A 300 mHz uniform plane wave propagates through fresh water for which $\sigma=0,\mu_r=1$ and	8	
	$\varepsilon_r = 78$. Find attenuation constant, phase constant, wave length and Intrinsic impedance.	0	
b.	Explain uniform plane wave propagation in good conductors.	6	
c.	Define the following terms with respect to uniform plane waves :	6	
	(i) poynting vector (ii) Skin effect (iii) SWR	0	
8. a.	Explain the following terms with respect to antennas :	8	
	(i) Radiation pattern (ii) directive gain (iii) Effective aperture (iv) Effective height	0	
b.	Briefly explain the following :	6	
	i) Frii's transmission formula ii) Wave reflection from multiple interfaces	0	
c.	With the help of diagrams explain how oscillating dipoles radiate EM energy?	6	
	UNIT - V		
9. a.	Starting from vector magnetic potential derive equation for H_{φ} component of an oscillating dipole.	8	
b.	Evaluate the roughness factors for the earth at 10 MHz if $\sigma = 5$ for θ equal to	6	
	(i) 30° (ii) 45° (iii) 60°	6	
c.	List six important aspects to be considered while understanding the effect of imperfect earth.	6	
10 a.	What are the effects of curved nature of earth? Explain.	6	
b.	Height of transmitting and receiving antennas are 49 m and 25 m respectively. Link is		
	operating at 100 MHz with transmitted power of 100 W. Determine Los distance and received	6	
	field strength.		
C	Find the relationship between MUE and skin distance	0	

c. Find the relationship between MUF and skip distance.

8

* * * *