P08EC52 Page No	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B. E Electronics and Communication Engineering Semester End Examination, Dec 2014 Digital Signal Processing	
Time: 3 hrs Max. Marks: 100 Note: i) Answer any EWE full questions coloring at least TWO full questions from each part	
Note: i) Answer any FIVE full questions, selecting at least TWO full questions from each part. ii) Butter Worth and Chesyshev Polynomial table may be provided. PART - A	
1. a. Define DFT. Obtain the relationship between DFT and Z-transform.	6
b. Compute 5 point DFT of the sequence	
$x(n) = \{1, 0, 1, 0, 1\}$ and hence verify the symmetry property.	7
c. Find N point DFT of the sequence	
$x(n) = \cos\left(\frac{2\pi n}{N}\right) 0 \le n \le N - 1$	7
2 a. Verify Parseval's theorem for the sequence $x(n) = (\frac{1}{2})^n [u(n) - u(n-4)]$	6
b. Use DFT and IDFT to compute circular convolution of the following sequences	
$x_1(n) = \{1, 2, 3, 1\}$ and $x_2(n) = \{4, 3, 2, 2\}$	6
c. Use overlap save method to find linear convolution of the following sequences:	8
$x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 2, -1\}$ and $h(n) = \{1, 2\}$	0
3 a. Derive Radix-2, DIT FFT algorithm for computing N Point DFT. Draw the signal flow graph for $N = 8$.	10
b. Compute 8 point DFT of the following sequence using DIT FFT algorithm.	
$x(n) = \begin{cases} 1 & for - 3 \le n \le 3 \\ 0 & otherwise \end{cases}$	10
4 a Show how chirp-Z transform can be used for computing Z-transform of a N point Z-transform	10
of a N point sequence. Also show the Block diagram representation for the same.	10
b. Compute DFT of the following Real Sequences using DIF FFT flow graph. Compute DFT	
only once.	10
$x_1(n) = \{1, 1, 1, 1\}$	10
$x_2(n) = \{2, 1, 2, 1\}$	

5 5

5 5

PART - B

5	a.	Design an	analog Che	syshev filter	r for the fol	llowing s	specifications:	
-								

Pass band ripple :	1 dB	for $0 \le \Omega \le 10$ r/s	10
Stop band attenuation :	60 dB	for $\Omega \ge 50 \text{ r/s}$	

b. Design a 4th order High pass analog Butter worth filter for cut off frequency 50Hz.
--

- c. Write a note on frequency transformation.
- 6 a. Compare FIR and IIR filters.
 - b. Mention limitation & constraints of Fourier series method of designing FIR filter.
 - c. Design a normalized linear phase FIR filter having a phase delay of $\tau = 4$ and atleast 40 dB 10 attenuation in the shop band. Also obtain the magnitude of frequency response of the filter.

⁷ a. Let
$$H(S) = \frac{S+a}{(S+a)^2 + b^2}$$
 be a second order causal analog filter. Obtain H(z) using Impulse 10

invariance method. Take the sampling period to be T sec.

b. Using BLT, design a Butter Worth filter to meet the following specifications.

$$\begin{array}{ll} 0.8 & \leq \left| H\left(w\right) \right| \leq 1 & 0 \leq w \leq 0.2\pi \\ & \left| H\left(w\right) \right| \leq 0.2 & 0.6\pi \leq w \leq \pi \end{array}$$
 10

Take T = 1 sec.

8 a. Obtain the cascade and parallel form realization for the system whose system function is given by

$$H(z) = \frac{1 + \frac{1}{4}z^{-1}}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}\right)}$$
10

b. An FIR filter is described by the difference function :

$$y(n) = x(n) + 3.1x(n-1) + 5.5x(n-2) + 4.2x(n-3) + 2.3x(n-4)$$
10

Obtain Lattice realization of the filter. Also draw its direct form – I structure.

* * * * *