


Note: i) *Answer any FIVE full questions, selecting at least TWO full questions from each part. ii*) *Assume suitable missing data if any.*

PART - A

1. a. The auto correlation function of a wide stationary process x(t) is shown in Fig. 1(a)

10

Find the power spectral density $S_X(f)$ of the random Process X(t)

- b. Define the power spectral density $S_X(f)$ of wide sense stationary process X(t). Specify its properties. 10
- 2 a. Explain the concept of ideal sampling. Derive the interpolation formula :

$$g(t) = \sum_{-\infty}^{\infty} g\left(\frac{n}{2w}\right) \sin c \left(2wt - n\right)$$
¹²

- b. The spectrum of a band pass signal g(t) has a band width of 0.6 kHz centered around 12 kHz.
 Find the Nyquist rate for quadrature sampling of in phase and quadrature components of the signal g(t).
- 3 a. Draw the block diagram of PCM system and explain the operation of basic elements of PCM system.
 - b. The Bandwidth of TV video & audio signal is 4.5 MHz. The signal is converted to PCM bit stream with 1024 quantization levels. Determine the numbers of bits/second generated by the 5 PCM system. Assume that signal is sampled at the rate of 20% above Nyquist rate.
 - c. What are the types of quantizing? Explain the concept of mid-riser type of quantizing with related graphs.

5

P08EC54 <i>Page No</i>	
4 a Explain the block diagram of DPCM transmitter and receiver with related equations.	10
b. Define slope overload distortion and granular noise in DM and explain how it is overco	
by using ADM.	10
PART - B	
5 a. Draw the encoded waveforms for the bit steam 101101010101 for the following schemes:	10
i) Polar ii) Bipolar iii) Manchester coding.	10
b. Explain the Nyquist criterion for distortion less base band binary transmission by us	ing 10
raised cosine spectrum.	10
6 a. Explain the Gram-Schmitt Orthogonalization Procedure with related diagrams.	10
b. Explain the Geometric interpretation of signals.	10
7 a. Explain the operation of coherent binary PSK system.	10
b. Differentiate between the transmitters of QPSK and MSK systems.	10
8 a. Explain the following with related equations:	
i) Maximum likely mood receiver for AWGN channel	10
ii) $(SNR)_0$ of a matched filter.	
b. With related diagrams and equations, explain the operation of a 'Non-coherent receiver us	sing 10
a matched filter.	10

* * * * *