P08EC55 <i>Page No</i>		
U.S.N U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E Electronics and Communication Engineering Semester End Examination; Dec 2014		
VLSI Circuits and Design Time: 3 hrs Max. Marks: 100		
<i>Note:</i> Answer any <i>FIVE</i> full questions selecting at least <i>TWO</i> full questions from each part PART - A		
1. a. With the help of a layout, explain the bonding pad frame for interfacing.	6	
b. Bring out the differences between AOI and OAI logic with suitable example.	6	
c. Obtain the block diagram of control of binary words using clocking planes for(i) Clocked adder (ii) Clocked ALU.	8	
2 a. Determine the resistivity of a sample doped with 10 ¹⁵ /cc (P-type) with $\mu_n = 1350 \frac{cm^2}{V-sec}$		
$\mu_p = 450 cm^2 / cc$ and $n_i = 1.45 \times 10^{10} / cc$	4	
b. Obtain the CMOS schematic and layout for the function $f = \overline{AB + C}$	4	
 With relevant cross sectional structure. Explain the formation of nFET and PFET in η-well CMOS technology using self- aligned gate process. 	12	
3 a. Discuss the latch up phenomenon in η-well CMOs process with cross sectional structure, equivalent circuit and behavioural response curve.	10	
b. Obtain the CMOs schematic and layout of Vertical mount NAND 2 gate.	4	
c. Discuss the design hierarchy at different levels in a CMOS structure.	6	
4 a Calculate drain current with $V_{DS} = 2V$, $t_{ox} = 10 nm$, $\mu_n = 520 \frac{cm^2}{V_{-sec}}$, $\left(\frac{W}{L}\right) = 8$,	10	
$V_{Tn} = 0.7 V$		
b. Using RC model, Obtain an expression of resistance of an nFET.	6	
c. With equivalent model, discuss the various capacitance associated with ηFET .	4	
PART - B		
5 a. Calculate the midpoint voltage of a CMOS inverter for the following data (i) $\beta_n = \beta_p$	6	
(ii) $\beta_n = 2.33\beta_p$, $K_n^1 = 140 \frac{\mu A}{V^2}$, $V_{Tn} = 0.7 V$, $K_p^1 = 60 \frac{\mu A}{V^2}$, $V_{Tp} = -0.7 V$, $V_{DD} = 3.0 V$	0	
b. Starting from the fundamental derive an expression for maximum signal frequency of CMOS inverter.	8	
c. Obtain an expression for power dissipation in terms of activity factor in an inverter and hence obtain the activity coefficients for NAND 2 and NOR 2	6	

Contd...2

P08EC55	Page No	
6 a. Design a non-inverting chain with respective trans conductance for the	5	
$C_L = 10 pF, C_{in} = 20 fF and \beta_1 = 200 \frac{\mu A}{V^2}$	8	
b. Obtain the schematic of C^2MOS NAND 2 and C^2MOS NOR2 gate.	4	
c. Discuss the general structure of CVSL logic and hence obtain the sche	ematic of CVSL 8	
AND/NAND and CVSL OR/NOR.	0	
7 a. Calculate the resistance and capacitance associated with a line of 225 μm	n length, 0.35µm,	
wide, 0.7µm. Thick with $T_{OX} = 0.9 \mu m$, $R_s = 0.02 \Omega$	$\mu m, R_s = 0.02\Omega$	
b. With the help of physical structure and RC model discuss the lumped		
circuit model.	6	
c. Analyze the floor planning and routing of sliceable floorplan (block diagra	am approach). 6	
8 a. Obtain the schematic of 4-bit shift register and charge leakage in shift regi	ister. 7	
b. Discuss the timing analysis using basic pipelined stage.	7	
c. Explain the working of basic clock stabilization network.	6	

* * * * *