6

8

6

8

6

6

6

6

8

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Electronics and Communication Engineering **Semester End Examination; Dec. - 2015 Digital Communication Theory**

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT-I

- 1 a. Define with relevant equations mean, autocorrelation and auto covariance of a random process X(t).
 - b. Define the power spectral density $S_X(f)$ of wide sense stationary process X(t) and explain its properties.
 - c. A random variable X has the density,


$$f_X(x) = \begin{cases} \frac{3}{32}(-x^2 + 8x - 12), & 2 \le x \le 6\\ 0 & elsewhere \end{cases}$$

Find the following moments:

- (i) m_0 (ii) m_1 (iii) m_2 (iv) μ_2
- 2 a. Define auto correlation of the process X(t). Explain the properties of autocorrelation function.
 - b. Define with relevant equations cumulative distribution function, probability density function and central moments.
 - ^c· Consider the probability density function $f_X(x) = Ke^{-|x|}$ for $-\infty < x < \infty$. Find:
 - (i) The value of K
- (ii) $f_X(x)$ (iii) $P(1 \le X \le 2)$

UNIT-II

- 3 a. State the sampling theorem, show that the spectrum of a sampling signal is $G_8(f) = f_s \sum_{s=0}^{\infty} G(g - nf_s)$.
 - b. Explain the working of sample and hold circuit for obtaining flat top samples from a continuous time signal with necessary equations.
 - c. A band pass signal g(t) with a spectrum shown in Fig. 3(c) is ideally sampled using a Dirac Comb. Sketch the spectrum of the samples signal $g_8(t)$ when $f_s = 20$, 30 and 40 Hz. Indicate if and how the signal can be recovered?

P08EC54 Page No... 2

4 a.	With a block diagram, explain the generation and reconstruction of quadrature sampling of band pass signals.	8
b.	A low-pass signal $g(t)$ is sampled to set $s(t)$ using flat top sampling method. Obtain the	
	expression for the sampling signal $s(t)$ and its spectrum. Hence show that flat top sampling	12
	leads to amplitude distribution and explain how it is corrected during reconstruction.	
	UNIT - III	
5 a.	Explain the three basic functions of a regenerative repeater in a PCM system, with a block diagram of the regenerative repeater.	6
b.	With diagrams, explain in detail the operation of DPCM transmitter and receiver.	8
c.	For a binary PCM signal, determine 'L' if the compression parameter $\mu = 100$ and minimum $[SNR]_{0,db} = 45dB$. Determine the $[SNR]_{0,db}$ in dB with this volume of L.	6
6. a.	Explain the principle of delta modulation with relevant figures and mathematical expressions the functioning of DM transmitter and receiver.	10
b.	What is the necessity of non-uniform quantization? Explain two companding methods used in practice.	10
	UNIT - IV	
7 a.	What is correlative coding? Explain duobinary coding with and without precoding.	10
b.	Sketch the encoded waveforms for the bit stream 1011010010 for the following schemes:	
	i) RZ unipolar ii) RZ polar iii) NRZ polar	10
	iv) NRZ = bipolar v) Manchester coding	
8 a.	What is eye pattern? Explain how it is useful in understanding the ISI problem.	8
b.	Obtain an expression for the power spectral density of NRZ polar format.	6
c.	With necessary block diagram. Explain two modes of operation of an adaptive equalizer.	6
	UNIT - V	
9 a.	Explain the generation and demodulation of DPSL wave with block diagrams.	10
b.	Explain briefly phase tree and phase trellis in MSK.	6
c.	Binary data are transmitted over a microwave link at the rate of 10 ⁶ bps and PSD of noise at	
	the receiver input is 10^{-10} watts per hertz. Find the average carrier power required to maintain	
	an average probability of error $P_e \le 10^{-4}$ for coherent binary FSK. What is the required	4
	channel bandwidth? Take $\left(erfc\left(2.7\right) = 2 \times 10^{-4}\right)$.	
10 a.	Derive an expression for the average probability of symbol error of coherent binary FSK system.	10
b.	With the help of a block diagrams, explain the operation of QPSK transmitter and receiver.	10