
Page No... 1 U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec. - 2015 **VLSI Circuits and Design** Time: 3 hrs Max. Marks: 100 Note: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I 1 a. Explain the following with equations : 7 i) Channel length modulation ii) Substrate bias effect b. Derive the equation threshold voltage of a MOS structure. 7 c. A PMOS transistor was fabricated on a n-type substrate with a bulk doping density of $N_D = 10^{16} \text{ cm}^{-3}$, gate doping (n-type poly) of $N_D = 10^{20} \text{ cm}^{-3}$, $\frac{Q_{ox}}{a} = 4 \times 10^{10} \text{ cm}^{-2}$ and gate 6 oxide thickness of $t_{ox} = 0.1 \mu m$. Calculate the threshold voltage at room temperature for $V_{SB} = 0$. Use $\epsilon_{si} = 11.7 \epsilon_0$. 2 a. Explain the different region of operation for a CMOS inverter. 5 b. Discuss the enhancement load nMOS inverter and depletion load nMOS inverter. 8 c. Consider a CMOS inverter with the following parameters nMOS V_{TO} , n= 0.6 V, $\mu_n C_{ox} = 60 \ \mu A/V^2, \ (W/L)_n = 8 \qquad pMOS \quad V_{TO, \ p} = - \ 0.7 \ V, \ \mu_p c_{ox} = 25 \ \mu A/V^2, \ (W/L)_p = 12,$ 7 $R_L = 10 \text{ k}\Omega$. Calculate the noise Margin's and the switching threshold (V_{th}) of this circuit. The power supply voltage is $V_{DD} = 3.3$ V. UNIT - II 3 a. Explain CMOS Ring oscillator circuit. 5 b. Analyze the design of CMOS inverter with delay constraints. 8 c. CMOS inverter with a power supply voltage of $V_{DD} = 5$ V, determine the fall time τ_{fall} , which is defined as the time elapsed between the time point at which $V_{out} = V_{90\%} = 4.5 \text{ V}$ and the time point at which $V_{out} = V_{10\%} = 0.5$ V. Use both the average current method and 7 the differential equation method for calculating τ_{fall} . The output load capacitance is 1 pF. The nMOS transistor parameters are given as $\mu_n C_{ox} = 20 \ \mu A/V^2$, $(W/L)_n = 10$, $V_{T,n} = 1.0 \ V$. With a neat diagrams discuss the inter connect capacitance estimation. 4 a. 7 b. Analyze the interconnect with RC delay model. Use Elmore formula to calculate the delay 7

of given circuit between nodes V_{out3}.

P08EC55

c.	Explain the following :	6
	i) Power Meter Simulation (ii) Power Delay Product.	6
UNIT - III		
5 a.	Explain the generalized NOR structure with multiple inputs with relevant equations.	7
b.	Sketch the CMOS logic circuit for the function,	_
	$Y = \overline{A(B+C) + D}$	5
c.	Discuss the working of CMOS transmission gates Design 4:1 MUX using TG.	8
6. a.	Discuss the clocked NOR SR latch with AOI based implementation and waveform.	8
b.	Explain the function of a SR latch using NOR2 gates with gate level schematic and CMOS circuit.	6
c.	Describe the function of a CMOS implementation of the D-latch.	6
UNIT - IV		
7 a.	Discuss the voltage Boot trapping with relevant equations.	10
b.	Define pass transistor. Describe how does logic '0' transfer and logic '1' transfer takes	10
	place in pass transistor.	10
8 a.	Explain the following :	8
	i) Zipper CMOs circuits ii) NP- Domino logic	0
b.	Explain the principle of charge sharing with example.	5
c.	Explain the dynamic domino CMOS logic with advantages.	7
UNIT - V		
9 a.	Describe the structure and working of BICMOS inverter circuit.	7
b.	Develop the Expression for forward and Reverse active mode of BJT.	8
c.	Consider a logic gate for the Boolean function $Z = \overline{(A+B+C).(D+E)}$ design a BICMOS	5
	circuit for the function.	-
10 a.	Explain latch-up in CMOS inverter.	6
b.	Discuss the operation of output circuit and $L\left(\frac{di}{dt}\right)$ noise.	7
c.	Explain the following :	7
	i) H-Tree Clock distribution ii) Three level buffered clock distribution	-