P13EC53									P	age	e No 1				
						U.S	5. <i>N</i>								7
	P.E.S.	Coll	ege	of E	Ing	inee	ring.	Ma	ndy	'a -	57	14	01		
	(.	An Au	tonon	nous I	nstitu	ition aj	ffiliate	d to V	TU, B	elga	um)				
Fift	h Semes					ics an amina					Eng	gine	erir	ıg	
						Theor	,			13					
Time: 3 hrs							·		0	1	Max	. Ma	ırks	: 100)
Note: i) Ansv		•			-		full qu	estion	from e	each	unit.				
<i>ll)</i> A331	ıme missi	ng uun	л, <i>i</i> ј и	ny, sun	iabiy.	UNIT	' - I								
1 a. Define:															
i) Self in	formation	1	ii)	Entrop	ŊУ										4
(iii) Rate	of inforn	nation	iv)	Mutua	l Info	ormatic	on								
b. Derive a	1 expressi	ion for	avera	age info	ormat	tion co	ntent o	f long	indepe	ende	nt m	essa	ges.		6
c. State and	prove so	ource co	oding	theore	m.										10
2 a. State and	prove K	raft Ine	equali	ty.											6
b. Apply H	uffman e	ncodin	ig pro	ocedure	e for	the fol	llowing	g set o	of mes	sage	es an	d fii	nd ef	fficier	ncy.
Apply the	ne same	to the	seco	ond or	der e	extensi	on and	l find	how	mu	ch e	ffici	ency	is b	
improve	l,														10
$\left\{X_1, X_2\right\}$	$, X_3 \} = \{$	0.7, 0).15, (0.15}											
c. A code i	s compos	ed of d	lots a	nd dasl	hes. A	Assumi	ing tha	t a das	h is 3	time	es as	long	g as a	a dot	and
has one t	hird the p	orobabi	lity of	f occur	rence	e of dot	t. Calcı	ılate:							4
(i) The in	formation	n in a c	lot an	d dash		(ii) The	e entroj	py of c	lot-das	sh co	ode				
						UNIT	- II								
3 a. State Sha	nnon's H	leartley	y law	and wr	ite its	s impli	cations								4
b. State the	propertie	es of r	nutua	l infor	matic	on prov	ve that	mutua	al info	orma	tion	is sy	ymm	etric	and 8
nonnega	ive.														0
c. For a giv	en joint p	robabi	lity m	natrix c	ompı	ute,									
H(X),	H(Y), H	H(X,Y)	r), <i>H</i>	H(X / Y)	Y), 1	H(Y/Z)	X) &	I(X,	Y)						
	0.05	0	0.2	0.05]											8
$p(\mathbf{v} \mathbf{v})$	_ 0	0.1	0.1	0											0
P(X,Y) =	0	0	0.2	0.1											
	0.05	0.05	0	0.1											

4 a. Explain with neat block diagram, the digital communication system indicating the various types of communication channels. Also define the various probabilities.

8

Page No... 2

P13EC53

b. Two noisy channels are cascaded whose channel matrices are given below. Given

$$P(X_{1}) = P(X_{2}) = \frac{1}{2} \text{ Find } I(X,Y), \ I(X,Z) \text{ & show that } I(X,Y) > I(X,Z)$$

$$P(Y_{X}) = \begin{bmatrix} \frac{1}{6} & \frac{1}{6} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix} P(Z_{Y}) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
12

UNIT - III

- 5 a. What are the different methods of controlling Errors? Explain.
 - b. For a systematic (7, 4) linear block code the party matrix is given below:
 - (i) Find all possible code vectors.
 - (ii) A single error has occurred in each of these received vectors, correct them. $Y_A = 0111110$,

 $Y_B = 1011100$ and $Y_C = 1010000$

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

c. Define:

(i) Hamming weight(ii) Hamming distance(iii) Code rate(iv) Block code.

- 6. a. Parity check matrix of (7, 4) Hamming code are given by $C_5 = d_1 \oplus d_3 \oplus d_4$, $C_6 = d_1 \oplus d_2 \oplus d_3$, $C_7 = d_2 \oplus d_3 \oplus d_4$ where d_1 , d_2 , d_3 , d_4 are message bits:
 - (i) Find generator and parity check matrix
 - (ii) Prove that $GH^T = 0$
 - (iii) The (n,k) linear block code so obtained has a dual code, This dual code is a

 $(n, n-k_1)$ code having a generators matrix H. Determine the eight code vectors of the dual code for the (7,4) Hamming code described above.

(iv) Find the minimum distance of the dual code determine in part (iii).

- b. Explain the matrix representation of linear block codes.
- c. Define:
 - (i) Systematic linear blocks code
 - (ii) Burst error.

Contd.....3

8

6

6

12

6

2

P13EC53

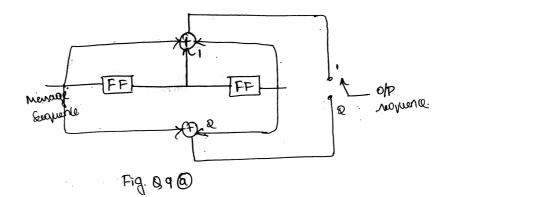
Page No... 3

10

10

10

10


UNIT - IV

- 7 a. Explain the matrix description of cyclic codes.
 - b. What is a binary cyclic code? Find the code word for messages 1001 and 1011.
- 8 a. Explain the following codes:
 - (i) RS codes (ii) Golay codes
 - (iii) Shortened cyclic codes (iv) Burst error correction codes.
 - b. The generation polynomial for (15, 7) cyclic code is $g(x) = 1 + x^4 + x^6 + x^7 + x^8$,
 - (i) Find the code vector in systematic form for the message $D(x) = x^2 + x^3 + x^4$
 - (ii) Assume that first and last bit of the code vector V(x) for $D(x) = x^2 + x^3 + x^4$ suffer transmission errors. Find the syndrome of V(x).

UNIT - V

- 9 a. For the convolution encoder shown in Fig. Q9(a) determine the following :
 - (i) Dimensions of the code (ii) Code rate (iii) Generator sequence

(iv) Output sequence for message sequence $m = \{1 \ 0 \ 0 \ 1 \ 1\}$ using time domain and transform domain approach.

- b. Consider the (3,1,2) convolutional code with $g^{(1)} = (110), g^{(2)} = (101), g^{(3)} = (111),$
 - i) Draw the encoder block diagram
 - ii) Find the generator matrix

iii) Find the code word corresponding to the information sequence (11101) using time and transform domain approach.

- 10 a. Explain the concept of coded modulation.
- b. Illustrate the Underboeck's TCM design rules. 10

* * * *

10

10

10