P13EC54 Page No... 1

U.S.N					
0.0.21					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec - 2016/Jan - 2017 **Digital Communication Theory**

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

- 1 a. Define the following terms related to random process:
 - i) Mean
- ii) Correlation
- iii) Covariance Function.
- b. A Random variable has a probability density function,

$$f_{x}(x) = \begin{cases} \frac{5}{4}(1 - x^{4}) & 0 \le x \le 1 \\ 0 & elsewhere \end{cases}$$
 Find;

- i) E[X] ii) E[4X+2] iii) $E[X^2]$.
- c. What is Gaussian process? Mention the properties of Gaussian process.

10

6

6

8

10

- 2 a. Define and mention the properties of power spectral density.
 - b. Let two random process X(t) and Y(t) be defined by;

$$X(t) = A\cos\omega_0 t + B\sin\omega_0 t$$

$$X(t) = A\cos\omega_0 t + B\sin\omega_0 t \qquad Y(t) = B\cos\omega_0 t - A\sin\omega_0 t.$$

Where, A & B are random variables assumed to have zero mean and are uncorrelated but

A & B are assumed to have variances σ^2 .

Find the cross-correlation function $R_{xy}(\tau)$.

UNIT - II

3 a. Explain the generation and re-construction of band-pass signal g(t).

10

b. Determine the Nyquist rate and the Nyquist sampling interval for the following signals and also plot the spectrum,

i)
$$g_1(t) = \operatorname{Sin} c(100\pi t)$$

ii)
$$g_2(t) = \sin c^2 (100\pi t)$$

10

10

iii)
$$g_3(t) = \operatorname{Sin} c(100\pi t) + S \operatorname{in} c(50\pi t)$$
.

- 4 a. Discuss the concept of practical sample and hold circuit along with block diagram and spectrum of the output signals.
 - b. A signal $g(t) = 10\cos(20\pi t)\cos(200\pi t)$ is sampled at the rate of 250 samples/second,
 - i) Sketch the spectrum of the sampled signal

10

- ii) Specify the cutoff ideal reconstruction filter, so as to recover g(t) from $g_{\delta}(t)$
- iii) Specify the Nyquist rate for the signal g(t).

P13EC54 Page No... 2

UNIT - III

5 a.	Distinguish the characteristics of midtread and midriser quantizer along with variation of	10					
	quantization error with input.	10					
b.	Explain the processing gain of DPCM system.						
c.	For a binary PCM signal, determine 'L', if the compression parameter $\mu=100$ and						
	minimum $[SNR]_0$, dB = 45 dB. Determine the $[SNR]_0$ in dB with this value of L.	6					
6 a.	A PCM system uses a uniform quantizer followed by a 7-bit encoder. The bit rate of the	e					
	system is 50 M bits/sec.						
	(i) What is the message bandwidth for which the system operates satisfactorily?	10					
	(ii) Determine the output signal-to-quantizing noise ratio when a sinusoidal modulating	g					
	wave of frequency 1 MHz is applied to the input.						
b.	With a neat block diagram, explain adaptive sub-band coding scheme in Transmitter and	10					
	receiver.	10					
	UNIT - IV						
7 a.	Sketch the encoded waveform for the bit stream 011011 for the following schemes,						
	i) RZ Uni-Polar ii) NRZ Uni-Polar iii) NRZ polar	10					
	iv) Biphase v) NRZ bipolar.						
b.	Explain adaptive equalizing filter for base band data transmission.	10					
8 a.	A multi-level digital communication system transmits one of the 16 possible levels over	r					
	the channel every 0.8 ms.	6					
	i) What is the minimum number of bits corresponding to each level?						
	ii) What is the baud rate? iii) What is the bit rate?						
b.	Show that power spectra of discrete PAM signal is $S_x(f) = a^2 T_b \sin c^2 (fT_b)$.	10					
c.	Sketch and explain ISI.	4					
	UNIT - V						
9 a.	Derive probability of error for a coherent FSK system.	10					
b.	With transmitter and receiver block diagram, explain coherent QPSK system.						
10a.	A binary data is transmitted using ASK over an AWGN channel at a rate 24 MBPS. The	e					
	carrier amplitude at the receiver is 1 mV. Noise power spectral density, $\frac{N_o}{2} = 10^{-15} w / Hz$. 8					
	Find the average probability of error, if the detection is (i) Coherent (ii) Non-coherent.						
b.	With necessary waveforms and block diagrams, explain continuous phase modulation scheme.	n 12					