U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Electronics and Communication Engineering Make-up Examination; Jan / Feb -2017 Digital Communication Theory

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit.

ii). Missing data, if any, may be suitably assumed.

UNIT - I

- 1 a. Define Random process and Random variable. Explain with suitable examples.
 - b. Consider random variable *X* defined by a probability function

$$f_x(x) = \begin{cases} K, & \text{a constant for } 2 \le x \le 4 \\ 0, & \text{elsewhere} \end{cases}$$

Determine:

6

6

8

6

8

- i) The constant K
- ii) $F_x(x)$
- iii) $P(x \le 3.5)$.
- c. Write properties of auto correlation.
- 2 a. State PSD (Power Spectral Density), and write any three properties of it.
 - b. Consider a random variable $X(t) = A\cos(wt + \theta)$, where W and θ are constant and A is a random variable uniformly distributed (-a, a). Find Mx and $Rx(t_1, t_2)$ and determine whether X(t) is a wide sense stationary process.
 - c. A random variable *X* has the density

$$f_x(x) = \begin{cases} \frac{3}{32} & \left(-x^2 + 8x - 12\right), 2 \le x \le 6\\ 0 & Otherwise \end{cases}$$

Find the following:

i) m_0 ii) m_1 iii) μ_2 .

UNIT - II

3 a. State and prove sampling theorem for an analog signal by sequence of impulses. Assume that the spectrum of X(t) is band limited, it is zero outside the interval $-f_m < f < f_m$ and sample X(t) impulse and sampled signals.

P13EC54 Page No... 2

b.	A waveform consisting of a sinusoid of fundamental frequency 500 Hz and its 3 rd harmonic			
	amplitude 0.1 times that of the fundamental is sampled at the rate of 10,000 samples per			
	second ideally. Sketch the neat figure of the spectrum of the sampled waveform showing first	10		
	four components.			
4 a.	Describe the practical sample and hold circuit and its reconstruction with diagrams and	10		
	equations.	10		
b.	A signal $X(t) = 2\cos 400\pi t + 6\cos 640\pi t$ is ideally sampled at $f_s = 500 Hz$. If the sampled			
	signal is passed through an ideal low pass filter with a cutoff frequency of 400 Hz,	10		
	i) Sketch the frequency spectrum of the sampled wave	10		
	ii) State what frequency components will appear in the output?			
	UNIT - III			
5 a.	Show that for large values of $\mu = A$, the μ -law and A-law have the same companding gain	7		
	Gc.	/		
b.	Explain adaptive delta modulation with block diagram and equations.	10		
c.	Sketch the block diagram of regenerative repeater in PCM system.	3		
5 a.	A DM system is designed to operate at 3 times the Nyquist rate for a signal with 3 kHz			
	bandwidth, the quantizing step size is 250 mV. Determine:			
	i) The maximum amplitude of a 1 kHz input sinusoid for which the delta modulator does not	6		
	show slope overload			
	ii) The post filtered output SNR for the signal of part (i).			
b.	Explain Differential Pulse Code Modulation (DPCM) with block diagram and equations.	10		
c.	Six independent message sources of bandwidths W, W, 2W, 2W, 3W, 3W Hz are to be			
	transmitted on a time division multiplexed basis using a common communication channel,			
	i) Set up a scheme for accomplishing this multiplexing requirement with each massage signal	4		
	sampled at its Nyquist rate			
	ii) Determine the minimum transmission bandwidth of the channel.			
	UNIT - IV			
7 a.	Sketch and derive power spectra of a NRZ bipolar format.	10		
b.	The binary data steam 011100101 are applied to the input of a modified duo-binary system,			
	i) Construct the modified duo-binary coder output and corresponding receiver output, without			
	precoder.	10		
	ii) Suppose that due to error in transmission, the level produced by the third digit is reduced			
	to zero. Construct a new receiver output.			

P1.	3EC54		Page No 3					
8 a.	Write binary data formats for a bit stream 1100110101,							
	i) NRZ polar	ii) Machester	iii) NRZ bipolar.	6				
b.	Explain Eye pattern	for evaluating the co	mbined effect of ISI and channel noise in case of					
	Base band data transr	mission system.		6				
c.	Explain duo-binary e	ncoder with precoder	and duo-binary detector with relevant equations.	8				
	UNIT - V							
9 a.	Write equation to rep	present four symbols	in QPSK. Explain signal space diagram of QPSK					
	with neat sketch. Also explain its decision rule for the detection of the transmitted data							
	sequence.							
b.	Calculate the error of	probability for cohere	ent binary phase shift keying.	10				
10 a.	With relevant block	diagram, explain the	working of coherent binary FSK transmitter and	10				
	receiver.			10				
b.	Explain the working	of DPSK transmitter a	and receiver with block diagrams.	10				