P1	3EC55 Page No 1			
(BET				
Ti	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E Electronics and Communication Engineering Semester End Examination; Dec - 2016/ Jan - 2017 Digital CMOS VLSI Design			
	 <i>ote:</i> i) Answer <i>FIVE</i> full questions, selecting <i>ONE</i> full question from each unit. <i>ii</i>) Missing data, if any, may be suitably assumed. UNIT - I 			
1 a.	Calculate the threshold voltage V_{TO} for $V_{SB} = 0$, given substrate loping $10^{15} / cc$, poly			
	silicon gate doping density $10^{20} / cc$, gate oxide thickness $650 \mathring{A}$, $N_{ox} = 2 \times 10^{10} / cm^2$ $\varepsilon_{Si} = 11.7\varepsilon_0$, $\varepsilon_{ox} = 3.97\varepsilon_0$.	12		
b.	Analyze the input of second order effects with respect to;(i) Substrate bias effect(ii) Channel length modulator.	8		
2 a.	Draw the layout of resistive load inverter with diffused resistor and undoped poly silicon resistor.	4		
b.	Analyze the VTC of 3 CMOS invertors with different $\frac{\beta n}{\beta P}$.	4		
c.	Calculate the noise margins of CMOS inverter. Given $V_{DD} = 3.3V$, $V_{TO,n} = 0.6$,	12		
	$V_{TP} = -0.7V$, $K_n = 200 \mu A / V^2$, $K_p = 80 \mu A / V^2$.	12		
UNIT - II				
3 a.	Derive an expression for τ_{PLH} and τ_{PLH} of CMOS inverter considering; (i) V _{50%} (ii) V _{10%} (iii) V _{90%} along with I/o w/f.	10		
b.	Briefly analyze the influence of fringing electric fields upon the parasitic wire capacitance.	4		
c.	Along with voltage and current waveform, obtain an expression for average power in CMOS inverter.	6		
4 a.	Analyse the impact of interconnect delay over gate delay in sub-micron CMOS technology.	6		
b.	Obtain an expression for delay by considering Elmore delay concept in a general RC tree network.	8		
c.	With a typical voltages waveform, obtain an expression for oscillation frequency in a 3-stage ring oscillator.	6		

UNIT - III

5 a.	Obtain an expression for switching threshold voltage of CMOS NOR ₂ Gate.	6	
b.	Realize the function $F = AB\overline{C} + \overline{AB} + A\overline{C}$ using CMOS TG (transmission gates).	4	
c.	Obtain the Euler path and draw the optimized stick diagram for the function,	10	
	$F = \overline{A(D+E) + BC}.$	10	
6 a.	Along with CMOS schematic and waveform, explain the working of NOR based clocked	8	
	SR latch.	0	
b.	Along with gate level schematic, nMOS schematic and waveform explain the working of	8	
	NAND based SR latch.	0	
c.	Realize the schematic of CMOS D latch version 1.	4	
UNIT - IV			
7 a.	Discuss the charge storage and charge leakage phenomenon at a soft node in a CMOS n/w.	8	
b.	Analyze the working of high performance of DOMINO CMOS logic. In what way it is	12	
	better than Dynamic CMOS logic? Explain.	12	
8 a.	Explain the voltage boot strapping principle. Hence derive an expression for C_{boot}/C_S .	8	
b.	Analyze the performance of NORA CMOS logic and obtain pipelined architecture using	12	
	NORA CMOS logic.	12	
UNIT - V			
9 a.	Derive an expression for I_C in forward Active mode, using Ebers-moll equivalent circuit.	10	
b.	Realize the schematic of BiCMOS, NAND3 gate.	4	
c.	Discuss the H-tree and Buffered clock distribution n/w.	6	
10 a.	Analyze the response of delay V/s C_L for CMOS and BiCMOS technology.	5	
b.	Discus briefly $L(\frac{di}{dt})$ noise effect in output circuits.	6	
c.	Analyze the performance of 3 clock generation n/ws.	9	

* * *