U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

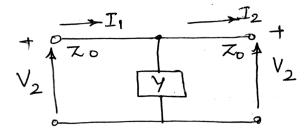
(An Autonomous Institution affiliated to VTU, Belgaum)

Sixth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; June/July - 2015 Microwave Devices and Integrated Circuits

Time: 3 hrs Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART- A


- 1 a. Derive an expression for the reflection coefficient of a transmission line at the receiving end in terms of load impedance Z_L and characteristic impedance Z_0 starting from incident voltage and current wave equation.
 - b. A transmission line has the following parameters:

 $R = 2 \Omega/m$, $G = 0.5 \text{ m} \overline{\text{O}}/m$, f = 1 GHz

 $L = 8 \text{ nH/m}, \quad C = 0.23 \text{ pF},$

Calculate; i) Characteristic impedance

- ii) Propagation constant.
- c. Briefly explain the characteristics of the smith chart.
- 2 a. Derive TE_{mn} field equations in rectangular wave guides.
 - b. With a neat sketch explain the two-hole directional coupler and obtain S-matrix of a directional coupler.
- 3 a. What is meant by reentrant cavity? Mention the role of reentrant cavities in Klystrons. With neat sketch, explain the different types of reentrant cavities.
 - b. With a neat diagram of helix-TWT, explain the amplification process and mention its applications.
- 4 a. Explain the properties of S-parameters for junction of ports having common characteristic impedance.
 - b. Derive an expression for ABCD parameters in terms of Z-parameters.
 - c. Find ABCD parameters of the shunt admittance y in the transmission line shown in the figure.

8

6

6

10

10

10

10

10

6

4

P08EC63 Page No... 2

PART - B

5.a.	With a neat sketch, explain the internal structure organization of different coaxial cables.					
b.	With relevant diagram, explain the waveguide Tees and its S-matrix.					
5 a.	Explain the modes of operation for Gunn diodes.					
b.	Explain the principles of operation of BARITT diodes.	6				
c.	Describe the structure and equivalent circuit of varactor diodes and how it is used for	10				
	frequency multiplication.	10				
7 a.	alculate the characteristic impedance Z_0 of microstrip line for the following specification.					
	$\epsilon_{\rm r} = 5.23$, h = 7 mils, t = 2.8 mils, $\omega = 10$ mils	4				
b.	Explain the attenuation losses of a parallel strip line.	6				
c.	Explain the structure of coplanar strip line and shielded strip line. Write equation for its	1.6				
	characteristic impedance.	10				
8 a.	Explain the steps involved in the manufacture of thick film and thin film MIC.	8				
b.	b. Explain the working environment and equipment for the precise and repeatable circuit					
	production	6				
c.	With a neat diagram, explain the interdigital capacitor and sandwich capacitor.	6				

* * * * *