U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Sixth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; June/July - 2015 Design and Synthesis Using Verilog HDL

Time: 3 hrs Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

140	PART - A						
1 a.	Declare the following variables in Verilog:						
	(i) A memory 'M' containing 64 words of 8 bits.						
	(ii) A 16-bit vector register called 'r'	4					
	(iii) A two dimensional array (4X4) 'A'						
	(iv) A parameter 'P'						
b.	Explain the different system tasks with example.	8					
c.	Explain number specifications in Verilog with example.	8					
2 a.	Write a Verilog module for a 4-bit adder using 'for-loop' statement.	8					
b.	Write a Verilog module for a 16:1 mux using two 8:1 in structural style.	8					
c.	Explain rise and fall delays in the gate level design with example.	4					
3 a.	Write a Verilog module that divides the signal 'clk' of 1 MHz by 1 MHz to obtain 1 Hz.	4					
	Assign the divided signal to net clk 1.	7					
b.	Explain the following with an example :						
	i) Relay based timing control	9					
	ii) Continuous assignment and implied continuous assignment with an example.						
	iii) Blocking and non-blocking assignment statements with examples.						
c.	Explain sequential and parallel blocks with an example.	7					
4 a.	Write a function to perform the following:						
	i) Parity calculation of a 32 bit value assumes even parity.	8					
	ii) Left/Right shifter of 32-bit value.						
b.	Define a module called full adder built from two half adders. The module should contain the	8					
	task half adder.	O					
c.	Write a Verilog module for a full adder using case statement.	4					
PART - B							
5 a.	Explain the usage of \$ setup, should and \$ width system task.	6					
b.	Write the switch level Verilog description of NAND Gate and NOR gate.	6					

P08EC65 Page No			
	c.	With a neat block diagram explain the various steps in the flow that use delay back annotation	8
_			
O	a.	Write the description of a T-flip flop as a sequential UDP and show how it can be used in the	8
		4-bit ripple counter.	
	b.	Write the uses of Programming Language Interface (PLI).	6
	c.	Write the PLI routine to monitor Nets for value charges.	6
7	a.	Explain basic computer aided logic synthesis process with flow chart.	5
	b.	Design 16-bit ALU using 4-bit ALU's by Horizontal partitioning and Vertical partitioning	10
		techniques.	10
	c.	Write a note on functional verification.	5
8	a.	Write a code for RTL description for newspaper vending machine FSM.	10
	b.	Explain the functional verification flow environment.	10

* * * * *