P13	3EC61 Page No 1 U.S.N U.S.N Page No 1 P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Sixth Semester, B.E. – Electronics and Communication Engineering Semester End Examination; June - 2016 Analog CMOS VLSI Design	
Ti	me: 3 hrs Max. Marks: 100	
No	te: Answer FIVE full questions, selecting ONE full question from each unit.	
	UNIT - I	
1 a.	Plot the On-resistance of an n-channel MOSFET as a function of V_{G} , with drain open,	-
	source connected to IV supply. Assume $\mu_n c_{ox} = 50 \ \mu A / V^2$ w/L = 10 $V_{Th} = 0.7 V$	6
b.	Discuss the second order effects.	0
	i) Channel length modulation ii) sub threshold conduction	8

- c Analyze the MOS device capacitances along with fabrications structure.
- 2 a. Obtain the small signal equivalent circuit of source follower. Hence plot voltage gain versus 6 input voltage.
 - b. Along with I/O characteristic, explain the working of common gate amplifier.
 - c. Explain the working of cascade stage along with I/O characteristics.

UNIT - II

a.	Discuss the noise reduction by differential operation with necessary arrangement.	6
	4	

- b. Show that $|A_v| = \frac{4}{3}g_{m1}R_D$ by conducting basic differential pair such that M₂ is twice as wide as M₁ 6
- c. Basic differential pair uses a resistor rather than a current source with tail current of 1mA.

Assume
$$\left(\frac{w}{L}\right)_{1,2} = \frac{2.5}{0.5}, \ \mu_n c_{ox} = 50 \mu A / V^2, \ V_{TH} = 0.6 V, \ \lambda = V = 0, \ V_{Dn} = 3 V$$

- (i) What is the required input CM for which R_{SS} sustains 0.5 V?
- (ii) Calculate R_D for a differential gain of 5.

3

- 4 a. Discuss the applications of current sources along with schematic diagrams. 8
 - b. Using Asymmetric swings in differential pair with $\mbox{active mirror, discuss the circuit for calculations of G_m}. 6$
 - c. Briefly discuss the common-mode properties.

UNIT - III

- 5 a. Derive an expression for positive- temperature, coefficient voltage along with circuit.
 b. Discuss the working of conceptual generation of temperature independent voltage.
 c. Discuss in brief the speed and noise issues in Band gap references.
 6

6

6

8

6

10

6 a.	Discuss the working of switched capacitor amplifier in sampling and amplification mode.	8			
b.	Explain the working of unity gain sampler/buffer circuit.	6			
c.	Analyze the response of Discrete time integrator to a constant input voltage.	6			
UNIT - IV					
7 a.	Analyze the working of ring oscillator with 2-pole feedback system. Obtain the loop gain	10			
	characteristic of the same.	10			
b.	Sketch the open-loop voltage gain and phase of two turned stages in an f/b loop of LC	10			
	oscillator. Neglect transistor capacitance.	10			
8 a.	Analyze the working of Colpitt's oscillator.	10			
b.	Discuss the working of voltage controlled oscillator. Discuss an expression of gain or	10			
	similarity of the circuit.	10			
	UNIT - V				
9 a.	Analyze the working of frequency-looked loop along with relevant diagram.	8			
b.	Discuss the process of frequency multiplication and frequency synthesis.	12			
10 a.	Analyze the conceptual operations of phase/frequency detector along with waveform.	10			

b. Discuss the skew and jitter reduction of PLL system.

* * * *