U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Sixth Semester, B.E. - Electronics and Communication Engineering Make - up Examination; July - 2016 Computer Communication Networks

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

		UNIT - I							
1	a.	Define the term with respect to computer networks:	1.0						
		(i) Host (ii) Client (iii) Server (iv) Network Core (v) Protocol.	10						
	b.	Compare and contrast circuit switched network with packet switched network.	5						
	c.	Suppose two hosts A and B are separated by 10,000 km are connected by direct link of							
		$R = 1$ Mbps with propagation speed of 2.5×10^8 m/s;	_						
		i) Calculate the Bandwidth Delay product	5						
		ii) What is the width of bit in the link?							
2	a.	Explain the concept of TDM and FDM circuit switching.	10						
	b.	Compare Virtual Circuit Network with Datagram Network.	5						
	c.	What is Queuing Delay? Model and describe queuing delay in relation to traffic intensity	_						
		and show it through the quantitative plot.	5						
		UNIT - II							
3	a.	With required formats explain HTTP request and response messages.	10						
	b.	With required diagram explain the SMTP protocol and justify it is a PUSH protocol.	10						
4	a.	Illustrate with an appropriate example how cookies modify or makes a non-state full HTTP							
		into a state full one.	10						
b.	b.	List out the generic FTP commands and Demonstrate the task of file transfer as a stream							
		lined process with TCP connections setup and commands.							
		UNIT - III							
5 a	5 a.	With a neat diagram describe the semantics (field wise explanation) of TCP segment	10						
		structure.							
	b.	Examine the process of segment exchange using 3-way handshake signals.	10						
6	a.	Write the UDP segment structure and explain its components.	10						
	b.	Explain End to End congestion control and network assisted congestion control.	10						

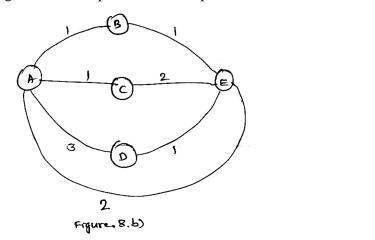
UNIT - IV

- 7 a. With a diagram explain the internal architecture of router, analyze the packet queuing scenario at input and output ports with respect to the switching fabric and illustrate head of the Line blocking.
 - b. With frame format describe the discrete fields in IPV6 datagram.

12

10

10


6

4

5

5

- 8 a. What is Tunnelling? Identify the need for Network Address Translation (NAT) in IPV4 and explain it briefly.
 - b. Consider the following network shown in Fig. Q8b. With the indicated link costs, use Dijkstra's shortest path algorithm to compute the shortest path from A to all nodes.

UNIT - V

- 9 a. Given the bit stream D = [1101011101] being transmitted using CRC method with the generator polynomial x^4+x+1 . Compute the actual bit stream transmitted with CRC.
 - b. Explain in brief Pure ALOHA scheme and show that its efficiency is 18%.
 - c. Write the Ethernet frame format.
- 10 a. Compare MAC address with IP address.
 - b. Illustrate with an example how a 2-dimensional parity scheme can be used to detect and correct bit errors.
 - c. How a VLAN is different from a Physical LAN? What is Trunking? Write the VLAN frame format and describe the VLAN tag field.