

UNIT - I

1 a. Define the term reflection coefficient and transmission coefficient for a transmission line

and derive equation
$$T^2 = \frac{Z_l}{Z_o} (1 - \tau_l^2).$$

- b. Define standing waves. Obtain the equation for maximum and minimum amplitude and phase of standing wave. Sketch the pattern of standing wave in lossy and lossless line.
- c. A transmission line has the following parameters :

$$R = 2 \Omega/m$$
, $G = 0.5 m mho/m$, $f = 1 GHz$, $L = 8 nH/m$, $C = 0.23 pF$. 4

- Calculate : i) Characteristic impedance ii) Propagation constant.
- 2 a. Derive equation for line impedance at any point on the line from the receiving end in terms of Z_l and Z_0 .
 - b. What are the applications of smith chart? Explain briefly.
 - c. A lossless line of characteristic impedance $R_0 = 50 \Omega$ is to be matched to a load : $Z_l = 50/[2 + j(2 + \sqrt{3})] \Omega$ by means of a lossless short-circuited stud. The characteristic

impedance of the stub is 100 Ω . Find the stub position and length so that a match is obtained.

UNIT - II

	3 a.	Derive the relevant equations for the propagation of TE waves in a rectangular waveguide	12
		and explain how the dominant mode is obtained.	12
	b.	Explain Faraday rotation isolator with a neat sketch.	8
Z	4 a.	Derive an expression for output power and output current of two-cavity klystron.	8
	b.	List the differences between travelling wave tube and klystron.	4

c. A reflex klystron-operates under the following conditions :

$$V_0 = 600 V$$
, $L = 1 mm$, $R_{sh} = 15 k\Omega$, $\frac{e}{m} = 1.759 x 10^{11}$, $f_r = 9 GHz$

The tube is oscillating at f, at the peak of the n = 2 mode or 1³/₄ mode. Assume that the transit time through the gap and beam loading can be neglected.

8

8

6

6

8

i) Find the value of the repeller voltage.

- ii) Find the direct current to give a microwave gap voltage of 200 V.
- iii) What is the electronic efficiency under this condition?

UNIT - III

5 a.	What are the different properties of scattering parameters? Explain briefly.	8			
b.	With necessary conditions write the scattering matrix representation of multiport network.	7			
c.	Explain the salient features of co-axial connectors and adaptors, with diagrams.	5			
6 a.	Explain with neat diagram the working principle of non-reciprocal phase shifter.	6			
b.	Explain the characteristics of magic tee passive device, with a schematic diagram. Also	8			
	obtain the S matrix representation of the magic-tee.	0			
c.	With neat diagram of a microwave attenuator explain the operation of the same.	6			
	UNIT - IV				
7 a.	Explain the principles of operation of the gunn diode with formation of Gunn domain. Also	10			
	explain the modes of operation of the Gunn diode with Gunn-oscillation mode.	10			
b.	Explain the construction and working of PIN diode and IMPATT diode.	10			
8 a.	Explain the operation of the Schottky-barrier diode with its structure. Also explain the				
	fabrication technique with sputtering of aluminium on silicon wafers. Draw the	10			
	characteristics of Schotty-barrier diode and write its symbol.				
b.	Write a note on :	10			
	i) TRAPATT diode ii) READ diode.	10			
UNIT - V					
9 a.	Explain the construction, field pattern and losses in micro strip line.	8			
b.	With neat diagram, explain the operation of parallel strip line and write the expressions for				
	distributed parameters of parallel strip lines, characteristic impedance and attenuation of the	8			
	same.				
c.	Define the different losses taking place in micro strip line.	4			
10 a.	Briefly explain MIC fabrication techniques.	10			
b.	Explain the accomplishment of circuit definition by means of,				
	(i) Plate through technique	10			
	(ii) Etch-back technique				

* * * *