P13IP36 Page No 2					
_Tin	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Industrial and Production Engineering Semester End Examination; Dec 2014 Fluid Mechanics and Hydraulic Machinery Time: 3 hrs Max. Marks: 100				
Not	<i>te: i</i>) Answer <i>FIVE</i> full questions, selecting <i>ONE</i> full question from each Unit. <i>ii</i>) Assume suitable missing data if any. Unit - I				
1 a.	Define the following properties of fluids mentioning their units in SI system;				
	i) Density ii) Specific weight iii) Absolute viscosity iv) Surface tension.				
b.	If the equation of a velocity profile over a plate is $v = 2y^{2/3}$ in which V is the velocity in m/s				
	at a distance of γ meters above the plate, determine the shear stress at $\gamma = 0$ and $\gamma = 0.075$ m.				
	Given; $\mu = 8.35$ poise.				
c.	State and prove Pascal's law. Mention certain applications of the same.				
2 a.	Represent the following on a shear stress and the velocity gradient plot :				
	i) Newtonian fluid ii) Non – Newtonian fluid iii) Ideal fluid iv) Ideal plastic fluid.				
b.	Establish a relationship amongst gauge, absolute and atmospheric pressure with a simple sketch.				
c.	The left leg of a U-tube mercury manometer is connected to a pipeline conveying water, the				
	level of mercury in the leg being 0.6 m below the centre of the pipe line and the right leg is				
	open to atmosphere. The level of mercury in the right leg is 0.45 m above that is the left leg				
	and the space above mercury is the right leg contains benzene (specific gravity 0.88) to a				
	height of 0.3 m. Find the pressure in the pipe. Sketch the arrangement.				
	Unit - II				
3 a.	Define total pressure and centre of pressure, Derive an expression for total pressure and				
	centre of pressure for a vertical plane surface immersed in a static mass of liquid with usual notations.				
b.	List the conditions of equilibrium of floating bodies. What is the position of meta centre with				
	respect to centre of gravity in each case?				
c.	A stream function in a two dimensional flow is $\psi = 2xy$. Show that the flow in irrotational				
	and determine the corresponding velocity potential ϕ .				
4 a.	Explain in brief, how the resultant pressure force is determined on a curved plane surface.				
	What F_X and F_Y stand for?				
	Contd2				

P13IP36 Page No 2		
b. A circular plate 2.5 m diameter is immersed in oil of specific gravity 0.8, its greatest and		
least depth below the free surface being 3 m and 1 m respectively. Find;	0	
(i) the total pressure on the one face of the plate	8	
(ii) the position of the centre of pressure.		
c. Explain the following:	C	
i) Stream function ii) Buoyancy iii) Metacentre	6	
Unit - III		
5 a. The efficiency η of a fan depends on the density $\rho,$ the dynamic viscosity μ of the fluid, the		
angular velocity ω , diameter 'D' of the rotor and the discharge Q. Express η interms of	8	
dimensionless parameters.		
b. Represent Bernoulli's equation for,	4	
i) Ideal fluid and ii) Real fluid and explain the different terms.	4	
c. Establish an expression for the frictional torque T of a disc of diameter D rotating at a speed	0	
N in a fluid of viscosity μ and density ρ is a turbulent flow using Buckingham π theorem.	8	
6 a. A pipe of diameter 400 mm carries water at a velocity of 25 m/s. The pressure at the points		
A and B are given as 29.43 N/cm^2 and 22.563 N/cm^2 respectively while the datum head at A	8	
and B are 28 m and 30 m. Find the loss of head between A and B.		
b. List the various energies possessed by a flowing fluid and write expressions for the	4	
establishing same explaining different terms.	4	
c. Derive an expression for Euler's equation of motion and deduce Bernoulli's equation from	8	
it. State the assumptions made.	0	
Unit - IV		
7. a. A 30 cm 15 cm venturimeter is provided in a vertical pipeline carrying oil of specific gravity		
0.9, the flow being upwards. The difference in elevation of the throat section and the entrance		
section of the venturimeter is 30 cm. The differential U – tube mercury manometer shows a		

section of the venturimeter is 30 cm. The differential U – tube mercury manometer shows a gauge deflections of 25 cm. Calculate;

i) The discharge of oil ii) The pressure difference between the entrance section and the throat section. Take the coefficient of discharge as 0.98 and specific gravity of mercury as 13.6.

- b. Write expression for the following during pipe flow and explain the terms,
 - i) Loss of head due to pipe friction
 - ii) Loss of head due to sudden contractions
 - iii) Loss of head due to sudden expansion
 - iv) Loss of head due to bend in pipe
- c. Derive an expression for loss of head due to pipe friction with usual notations.

6

6

8

P13	BIP36 Page No 3			
8 a.	Sketch a pitot tube and derive an expression for velocity of flow at any point using the same.	6		
b.	Draw the following velocity triangles for a pelton wheel and explain briefly,			
	i) Inlet velocity triangle	(
	ii) Outlet velocity triangle when the velocity of whirl at outlet tip in negative.	6		
	iii) Outlet velocity triangle when the velocity of whirl at the outlet tip is positive.			
c.	Differentiate between impulse and reactions turbines. An inward flow reaction turbine has			
	external and internal diameters as 1 m and 0.5 m respectively. The velocity of flow through			
	the runner is constant and is equal to 1.5 m/sec. Determine;	8		
	i) Discharge through the runner			
	ii) Width of the turbine at outlet if the width of the turbine at inlet $= 200$ mm.			
Unit - V				
9 a.	Define co-efficient of discharge and percentage slip as applied to a reciprocating pump.			
	A double acting reciprocating pump having piston area $0.1m^2$ has a stroke 0.30 m long. The	8		
	pump is discharging 2.4 m ³ of water per minute at 45 rpm, through a height of 10 m. Find the	0		
	slip of the pump and the power required to drive the pump.			
b.	Why are air vessels used in a reciprocating pump? Draw a simple sketch of the same.	4		
c.	Derive an expression for the work done /second on water by the double acting reciprocating	8		
	pump.	0		
10a.	Obtain an expression for the work done by the impeller of a centrifugal pump on water per	8		
	second per unit weight of water with appropriate velocity triangles.	0		
b.	Define specific speed of a centrifugal pump. Write an expression for the same and explain	4		
	the terms.			
c.	The internal and external diameters of the impeller of a centrifugal pump are 200 mm and			
	400 mm respectively. The pump is running at 1200 rpm. The vane angles of the impeller at			
	inlet and outlet are 20° and 30° respectively. The water enters the impeller radially and	8		
	velocity of flow is constant. Determine the work done by the impeller per unit weight of			
	water. Draw the velocity triangles.			

* * * * *